Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCeylan, B.-
dc.contributor.authorÇekiç, Y.-
dc.contributor.authorAkan, A.-
dc.date.accessioned2024-08-25T15:14:07Z-
dc.date.available2024-08-25T15:14:07Z-
dc.date.issued2024-
dc.identifier.isbn979-835038896-1-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601136-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5479-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.description.abstractEmotion estimation is an extremely critical and current research topic for human-computer interaction. In this study, a liking estimation method using electroencephalogram (EEG) signals is proposed to be used in neuromarketing studies. EEG data recorded while participants watch the advertisement videos of two different automobile brands are processed with deep learning techniques to estimate their liking status. After watching the videos, participants were presented with selected image sections from the advertisements (front view, console, side view, rear view, stop lamp, brand logo and front grille) and were asked to rate their liking by scoring from 1 to 5. EEG signals corresponding to these regions were converted into a two dimensional and RGB colored image using the short-time Fourier transform (STFT) method, and liking status was estimated using Deep Learning. The successful results obtained show that the proposed method can be used in neuromarketing studies. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadvertisementen_US
dc.subjectDeep Learningen_US
dc.subjectEEGen_US
dc.subjectemotional stateen_US
dc.subjectliking statusen_US
dc.subjectneuromarketingen_US
dc.subjectSTFTen_US
dc.subjectDeep learningen_US
dc.subjectHuman computer interactionen_US
dc.subjectLearning systemsen_US
dc.subject'currenten_US
dc.subjectAdvertisementen_US
dc.subjectConsumers' preferencesen_US
dc.subjectDeep learningen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmotion estimationen_US
dc.subjectEmotional stateen_US
dc.subjectLiking statusen_US
dc.subjectNeuromarketingen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectElectroencephalographyen_US
dc.titleConsumer Preference Estimation Using EEG Signals and Deep Learningen_US
dc.title.alternativeEEG Sinyalleri ve Derin Öğrenme Kullanılarak Tüketici Beğeni Durum Kestirimien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601136-
dc.identifier.scopus2-s2.0-85200927036en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57202281275-
dc.authorscopusid57209596712-
dc.authorscopusid35617283100-
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

62
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.