Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCelebioglu, C.-
dc.contributor.authorKilickaya, S.-
dc.contributor.authorEren, L.-
dc.date.accessioned2024-09-22T13:31:48Z-
dc.date.available2024-09-22T13:31:48Z-
dc.date.issued2024-
dc.identifier.isbn979-840071684-3-
dc.identifier.urihttps://doi.org/10.1145/3674912.3674918-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5534-
dc.description25th International Conference on Computer Systems and Technologies, CompSysTech 2024 -- 14 June 2024 through 15 June 2024 -- Ruse -- 201811en_US
dc.description.abstractAsynchronous machines are essential components that drive critical systems across industrial, trading, and residential sectors, powering heating units, pumps, and various appliances. Yet, ensuring their reliable process is paramount to prevent costly defects and maintain productivity. Notably, failures in the rolling element bearings (REB) account for about forty percent of motor failures, underscoring the urgency of early detection to mitigate operational risks and financial losses. To address this challenge, this paper proposes an innovative smartphone-based diagnostic technique for detecting bearing faults in induction machines. Leveraging the common availability and computational capabilities of smartphones, the approach utilizes the devices' audio recording functionality to capture motor audio signals. Audio data collected from rotating machines with various fault types is used to train a 1D Convolutional Neural Network (1D CNN), and the trained model is then deployed on a smartphone for real-time fault diagnosis. Embedding this approach into a user-friendly mobile application enhances accessibility and usability, offering a cost-effective solution for fault diagnosis in induction machines. © 2024 ACM.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofACM International Conference Proceeding Seriesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCondition-based Monitoring (CBM); Convolutional Neural Networks (CNNs); Embedded Machine Learning; Rolling Element Bearings (REBs)en_US
dc.subjectAsynchronous machinery; Audio recordings; Convolutional neural networks; Roller bearings; Rollers (machine components); Smartphones; Condition-based monitoring; Convolutional neural network; Embedded machine learning; Embedded machines; Machine-learning; Rolling Element Bearing; Smart phones; Cost effectivenessen_US
dc.titleSmartphone-based Bearing Fault Diagnosis in Rotating Machinery using Audio Data and 1D Convolutional Neural Networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1145/3674912.3674918-
dc.identifier.scopus2-s2.0-85202767198en_US
local.message.claim2024-10-04T20:10:28.663+0300|||rp00060|||submit_approve|||dc_contributor_author|||None*
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid59227101900-
dc.authorscopusid57215414702-
dc.authorscopusid6603027663-
dc.identifier.startpage149en_US
dc.identifier.endpage154en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.