Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAfsar, Özgür-
dc.contributor.authorTırnaklı, Uğur-
dc.date.accessioned2024-10-25T15:17:53Z-
dc.date.available2024-10-25T15:17:53Z-
dc.date.issued2024-
dc.identifier.issn0167-2789-
dc.identifier.issn1872-8022-
dc.identifier.urihttps://doi.org/10.1016/j.physd.2024.134375-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5567-
dc.description.abstractWe investigate energy distributions of Frenkel-Kontorova-type atomic chains generated from large number of independent identically distributed (iid) random initial atomic positionings under two cases. In the first case, atoms at the free-end chains without dissipation (conservative case) are only coupled to one other atom, whereas each atom inside the bulk is coupled to its 2 nearest neighbours. Here, atoms located at the chain are all at the same type. Such kind of systems can be modelled by conservative standard map. We show that, when the coupling is non-linear (which leads chaotic arrangement of the atoms) for energy distribution, the Boltzmann-Gibbs statistical mechanics is constructed, namely, exponential form emerges as Boltzmann factor P(E)proportional to e(-beta E). However, when the coupling is linear (which leads linear arrangement of the atoms) the Boltzmann-Gibbs statistical mechanics fails and the exponential distribution is replaced by a q-exponential form, which generalizes the Boltzmann factor as P(E)proportional to eq(-beta)q(E)=[1-(1-q)beta E-q](1/(1-q)). We also show for each type of atom localization with N number of atoms, beta (or beta(q)) values can be given as a function of 1/N. In the second case, although the couplings among the atoms are exactly the same as the previous case, atoms located at the chain are now considered as being at different types. We show that, for energy distribution of such linear chains, each of the distributions corresponding to different dissipation parameters (gamma) are in the q-exponential form. Moreover, we numerically verify that beta(q )values can be given as a linear function of 1/& sum;(N)(n=1)(1-gamma)((n-2)). On the other hand, although energy distributions of the chaotic chains for different dissipation parameters are in exponential form, a linear scaling between beta and gamma values cannot be obtained. This scaling is possible if the energies of the chains are scaled with 1/(1-gamma)(-N). For both cases, clear data collapses among distributions are evident.en_US
dc.description.sponsorshipTUBITAK (Turkish Agency) [123F420]; Ege University, Turkey [22512]en_US
dc.description.sponsorshipThis work has been supported by TUBITAK (Turkish Agency) under Research Project No: 123F420 and was supported by Ege University, Turkey under Research Project No: 22512. U.T. is a member of the Science Academy, Bilim Akademisi, Turkey.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPhysica d-nonlinear phenomenaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFrenkel-Kontorova modelen_US
dc.subjectDissipative standard mapen_US
dc.subjectBoltzman factoren_US
dc.subjectSimple atomic chainsen_US
dc.subjectEnergy distributionsen_US
dc.subjectModelen_US
dc.subjectDislocationen_US
dc.subjectBoltzmannen_US
dc.subjectMotionen_US
dc.titleEnergy distributions of Frenkel-Kontorova-type atomic chains: Transition from conservative to dissipative dynamicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2024.134375-
dc.identifier.scopus2-s2.0-85203626223en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidTIRNAKLI, Ugur/K-6866-2012-
dc.authorwosidAfsar, Ozgur/AAG-7107-2021-
dc.authorscopusid11840245800-
dc.authorscopusid6701713333-
dc.identifier.volume470en_US
dc.identifier.wosWOS:001316413000001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.03. Physics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.