Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5601
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuner, Hakan-
dc.contributor.authorErtugru, Seniz-
dc.contributor.authorTayyar, Gokhan Tansel-
dc.date.accessioned2024-11-25T16:53:51Z-
dc.date.available2024-11-25T16:53:51Z-
dc.date.issued2024-
dc.identifier.isbn978-3-031-67194-4-
dc.identifier.isbn978-3-031-67195-1-
dc.identifier.issn2367-3370-
dc.identifier.issn2367-3389-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-67195-1_35-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5601-
dc.descriptionInternational Conference on Intelligent and Fuzzy Systems (INFUS) -- JUL 16-18, 2024 -- Istanbul Tech Univ, Canakkale, TURKEYen_US
dc.description.abstractHydraulic systems typically operate under harsh conditions, such as in the heavy industry and military domain. Early diagnosis of single or multiple faults is very important to keep the system in safe working conditions. To generate different faults, an exhaustive simulation stage is required before validating the study with an experimental setup. Therefore, in this study, an electrohydraulic system model was first created using the Matlab-Simscape hydraulic system library. After the simulation stage, a data-based fault diagnosis method was applied through certain statistical feature calculations using time, frequency, and time-based frequency of the data collected using the Diagnostic Feature Designer Toolbox under theMatlab program, which allows the use of all signal and data-based debugging, identification, and classification methods under the same platform. Based on the features ranked by the Diagnostic Feature Designer Toolbox, the best fault model fits were investigated by clustering with Fuzzy C-Means.en_US
dc.description.sponsorshipCanakkale Onsekiz Mart Univen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofIntelligent and Fuzzy Systems, Vol 2, Infus 2024en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFault Diagnosisen_US
dc.subjectFeature Designen_US
dc.subjectClusteringen_US
dc.subjectFuzzy C-Meansen_US
dc.titleFault Diagnosis of an Electrohydraulic System by Using Fuzzy C-Means Clusteringen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-031-67195-1_35-
dc.identifier.scopus2-s2.0-85207005940en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid59376947400-
dc.authorscopusid6602271436-
dc.authorscopusid56082264400-
dc.identifier.volume1089en_US
dc.identifier.startpage293en_US
dc.identifier.endpage303en_US
dc.identifier.wosWOS:001329232000035en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.