Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYayci Z.O.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2024-11-25T16:53:55Z-
dc.date.available2024-11-25T16:53:55Z-
dc.date.issued2024-
dc.identifier.isbn978-946459361-7-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5613-
dc.description32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514en_US
dc.description.abstractHigh dynamic range (HDR) capture and display devices can be used to approximately mimic the human perception of gamut of colors and fine details. However, the relative high-cost of these devices may currently make them be not affordable for many consumers. Multi-exposure image fusion (MEF) offers a cost-effective software-based solution to this problem. By fusing low dynamic range (LDR) images with different exposure levels, MEF aims to create HDR-like images for LDR display devices, that are high in quality but low in cost. This study proposes a novel MEF weight-map extraction method using sparse signal representations and k-means clustering. A preprocessing stage extracts initial masks from over- and underexposed images to be used for weight map extraction and the proposed clustering model allows the overall algorithm to have good fusion performance regardless of the number of input images contained in the input exposure sequence. After a final multi-scale pyramidal fusion, the resulting HDR-like images show not only visually pleasing but also statistically significant results when compared to state-of-the-art methods in the literature. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectk-means clusteringen_US
dc.subjectMulti-exposure image fusionen_US
dc.subjectsparse representationsen_US
dc.subjectImage fusionen_US
dc.subjectK-means clusteringen_US
dc.subjectExposure fusionsen_US
dc.subjectHigh dynamic rangeen_US
dc.subjectHuman perceptionen_US
dc.subjectK-means++ clusteringen_US
dc.subjectMulti exposureen_US
dc.subjectMulti-exposure image fusionen_US
dc.subjectMulti-exposure imagesen_US
dc.subjectSparse featuresen_US
dc.subjectSparse representationen_US
dc.subjectWeight mapsen_US
dc.subjectDisplay devicesen_US
dc.titleSparse Features for Multi-Exposure Fusionen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-85208431390en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57419831800-
dc.authorscopusid57219464962-
dc.identifier.startpage451en_US
dc.identifier.endpage455en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.