Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYayci, Zeynep Ovgu-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2024-11-25T16:53:55Z-
dc.date.available2024-11-25T16:53:55Z-
dc.date.issued2024-
dc.identifier.isbn9789464593617-
dc.identifier.isbn9798331519773-
dc.identifier.issn2076-1465-
dc.identifier.urihttps://doi.org/10.23919/EUSIPCO63174.2024.10715133-
dc.description.abstractHigh dynamic range (HDR) capture and display devices can be used to approximately mimic the human perception of gamut of colors and fine details. However, the relative high-cost of these devices may currently make them be not affordable for many consumers. Multi-exposure image fusion (MEF) offers a cost-effective software-based solution to this problem. By fusing low dynamic range (LDR) images with different exposure levels, MEF aims to create HDR-like images for LDR display devices, that are high in quality but low in cost. This study proposes a novel MEF weight-map extraction method using sparse signal representations and k-means clustering. A preprocessing stage extracts initial masks from over- and underexposed images to be used for weight map extraction and the proposed clustering model allows the overall algorithm to have good fusion performance regardless of the number of input images contained in the input exposure sequence. After a final multi-scale pyramidal fusion, the resulting HDR-like images show not only visually pleasing but also statistically significant results when compared to state-of-the-art methods in the literature.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof32nd European Signal Processing Conference (EUSIPCO) -- AUG 26-30, 2024 -- Lyon, FRANCEen_US
dc.relation.ispartofseriesEuropean Signal Processing Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-Exposure Image Fusionen_US
dc.subjectK-Means Clusteringen_US
dc.subjectSparse Representationsen_US
dc.titleSparse Features for Multi-Exposure Fusionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO63174.2024.10715133-
dc.identifier.scopus2-s2.0-85208431390-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.startpage451en_US
dc.identifier.endpage455en_US
dc.identifier.wosWOS:001349787000090-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.openairetypeConference Object-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept05.01. Aerospace Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

48
checked on Mar 31, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.