Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5613
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yayci, Zeynep Ovgu | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2024-11-25T16:53:55Z | - |
dc.date.available | 2024-11-25T16:53:55Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9789464593617 | - |
dc.identifier.isbn | 9798331519773 | - |
dc.identifier.issn | 2076-1465 | - |
dc.identifier.uri | https://doi.org/10.23919/EUSIPCO63174.2024.10715133 | - |
dc.description.abstract | High dynamic range (HDR) capture and display devices can be used to approximately mimic the human perception of gamut of colors and fine details. However, the relative high-cost of these devices may currently make them be not affordable for many consumers. Multi-exposure image fusion (MEF) offers a cost-effective software-based solution to this problem. By fusing low dynamic range (LDR) images with different exposure levels, MEF aims to create HDR-like images for LDR display devices, that are high in quality but low in cost. This study proposes a novel MEF weight-map extraction method using sparse signal representations and k-means clustering. A preprocessing stage extracts initial masks from over- and underexposed images to be used for weight map extraction and the proposed clustering model allows the overall algorithm to have good fusion performance regardless of the number of input images contained in the input exposure sequence. After a final multi-scale pyramidal fusion, the resulting HDR-like images show not only visually pleasing but also statistically significant results when compared to state-of-the-art methods in the literature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 32nd European Signal Processing Conference (EUSIPCO) -- AUG 26-30, 2024 -- Lyon, FRANCE | en_US |
dc.relation.ispartofseries | European Signal Processing Conference | - |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multi-Exposure Image Fusion | en_US |
dc.subject | K-Means Clustering | en_US |
dc.subject | Sparse Representations | en_US |
dc.title | Sparse Features for Multi-Exposure Fusion | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.23919/EUSIPCO63174.2024.10715133 | - |
dc.identifier.scopus | 2-s2.0-85208431390 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.identifier.startpage | 451 | en_US |
dc.identifier.endpage | 455 | en_US |
dc.identifier.wos | WOS:001349787000090 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 05.01. Aerospace Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.