Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5614
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSen S.Y.-
dc.contributor.authorAkan A.-
dc.contributor.authorCura O.K.-
dc.date.accessioned2024-11-25T16:53:56Z-
dc.date.available2024-11-25T16:53:56Z-
dc.date.issued2024-
dc.identifier.isbn978-946459361-7-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5614-
dc.description32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514en_US
dc.description.abstractThis paper presents a novel early-stage Alzheimer’s dementia (AD) disease detection based on convolutional neural networks (CNNs). As it is widely used in detection and classification of AD disease, a time-frequency (TF) method has been proposed for AD detection. It has been described to address the problem of detecting early-stage AD by combining TF and CNN methods. The method is developed by utilizing the well-known structural similarity index measure (SSIM) to obtain discriminative features in each TF image. Experimental results demonstrate that the proposed method outperforms the early-stage AD detection using advanced signal decomposition algorithm that is intrinsic time-scale decomposition (ITD), and it achieves a notable improvement in terms of the detection success rates compared to AD detection from TF images of raw EEG signals. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer’s dementia (AD)en_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectElectroencephalography (EEG)en_US
dc.subjectIntrinsic Time-Scale Decomposition (ITD)en_US
dc.subjectShort-Time Fourier Transform (STFT)en_US
dc.subjectBrain mappingen_US
dc.subjectImage enhancementen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimer’s dementiaen_US
dc.subjectConvolutional neural networken_US
dc.subjectElectroencephalographyen_US
dc.subjectIntrinsic time-scale decompositionen_US
dc.subjectIntrinsic time-scale decompositionsen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectShort-time fourier transformen_US
dc.subjectTime-frequency imagesen_US
dc.subjectConvolutional neural networksen_US
dc.titleAlzheimer’s Dementia Detection: An Optimized Approach using ITD of EEG Signalsen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-85208442090en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215314563-
dc.authorscopusid35617283100-
dc.authorscopusid57195223021-
dc.identifier.startpage1377en_US
dc.identifier.endpage1381en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.