Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5614
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sen S.Y. | - |
dc.contributor.author | Akan A. | - |
dc.contributor.author | Cura O.K. | - |
dc.date.accessioned | 2024-11-25T16:53:56Z | - |
dc.date.available | 2024-11-25T16:53:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 978-946459361-7 | - |
dc.identifier.issn | 2219-5491 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5614 | - |
dc.description | 32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514 | en_US |
dc.description.abstract | This paper presents a novel early-stage Alzheimer’s dementia (AD) disease detection based on convolutional neural networks (CNNs). As it is widely used in detection and classification of AD disease, a time-frequency (TF) method has been proposed for AD detection. It has been described to address the problem of detecting early-stage AD by combining TF and CNN methods. The method is developed by utilizing the well-known structural similarity index measure (SSIM) to obtain discriminative features in each TF image. Experimental results demonstrate that the proposed method outperforms the early-stage AD detection using advanced signal decomposition algorithm that is intrinsic time-scale decomposition (ITD), and it achieves a notable improvement in terms of the detection success rates compared to AD detection from TF images of raw EEG signals. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | European Signal Processing Conference, EUSIPCO | en_US |
dc.relation.ispartof | European Signal Processing Conference | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Alzheimer’s dementia (AD) | en_US |
dc.subject | Convolutional Neural Network (CNN) | en_US |
dc.subject | Electroencephalography (EEG) | en_US |
dc.subject | Intrinsic Time-Scale Decomposition (ITD) | en_US |
dc.subject | Short-Time Fourier Transform (STFT) | en_US |
dc.subject | Brain mapping | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Neurodegenerative diseases | en_US |
dc.subject | Alzheimer | en_US |
dc.subject | Alzheimer’s dementia | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Intrinsic time-scale decomposition | en_US |
dc.subject | Intrinsic time-scale decompositions | en_US |
dc.subject | Short time Fourier transforms | en_US |
dc.subject | Short-time fourier transform | en_US |
dc.subject | Time-frequency images | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.title | Alzheimer’s Dementia Detection: An Optimized Approach using ITD of EEG Signals | en_US |
dc.type | Conference Object | en_US |
dc.identifier.scopus | 2-s2.0-85208442090 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57215314563 | - |
dc.authorscopusid | 35617283100 | - |
dc.authorscopusid | 57195223021 | - |
dc.identifier.startpage | 1377 | en_US |
dc.identifier.endpage | 1381 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.