Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5614
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞen, Sena Yağmur-
dc.contributor.authorAkan, Aydın-
dc.contributor.authorCura O.K.-
dc.date.accessioned2024-11-25T16:53:56Z-
dc.date.available2024-11-25T16:53:56Z-
dc.date.issued2024-
dc.identifier.isbn978-946459361-7-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5614-
dc.description32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514en_US
dc.description.abstractThis paper presents a novel early-stage Alzheimer’s dementia (AD) disease detection based on convolutional neural networks (CNNs). As it is widely used in detection and classification of AD disease, a time-frequency (TF) method has been proposed for AD detection. It has been described to address the problem of detecting early-stage AD by combining TF and CNN methods. The method is developed by utilizing the well-known structural similarity index measure (SSIM) to obtain discriminative features in each TF image. Experimental results demonstrate that the proposed method outperforms the early-stage AD detection using advanced signal decomposition algorithm that is intrinsic time-scale decomposition (ITD), and it achieves a notable improvement in terms of the detection success rates compared to AD detection from TF images of raw EEG signals. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer’s dementia (AD)en_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectElectroencephalography (EEG)en_US
dc.subjectIntrinsic Time-Scale Decomposition (ITD)en_US
dc.subjectShort-Time Fourier Transform (STFT)en_US
dc.subjectBrain mappingen_US
dc.subjectImage enhancementen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimer’s dementiaen_US
dc.subjectConvolutional neural networken_US
dc.subjectElectroencephalographyen_US
dc.subjectIntrinsic time-scale decompositionen_US
dc.subjectIntrinsic time-scale decompositionsen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectShort-time fourier transformen_US
dc.subjectTime-frequency imagesen_US
dc.subjectConvolutional neural networksen_US
dc.titleAlzheimer’s Dementia Detection: an Optimized Approach Using Itd of Eeg Signalsen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-85208442090-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215314563-
dc.authorscopusid35617283100-
dc.authorscopusid57195223021-
dc.identifier.startpage1377en_US
dc.identifier.endpage1381en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5614.pdf
  Restricted Access
1.01 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

62
checked on Mar 3, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.