Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbugday S.P.-
dc.contributor.authorCura O.K.-
dc.contributor.authorAkbugday B.-
dc.contributor.authorAkan A.-
dc.date.accessioned2024-11-25T16:53:56Z-
dc.date.available2024-11-25T16:53:56Z-
dc.date.issued2024-
dc.identifier.isbn978-946459361-7-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5615-
dc.description32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514en_US
dc.description.abstractOne of the most frequent neurological conditions that impair cognitive abilities and have a major negative impact on quality of life is dementia. In this work, a novel approach for identifying Alzheimer’s disease (AD) by utilizing electroencephalogram (EEG) signals via signal processing techniques is proposed. Five spectral domain characteristics are computed for one-minute EEG segment duration using EEG data. Each feature is mapped onto a 9 × 9 matrix called topographic EEG feature maps (EEG-FM) to represent spectral as well as spatial information on the same image. Images were then classified using a 2-layer convolutional neural network (CNN) to classify healthy and AD cases. Results indicate that the constructed CNN generalizes well, and the proposed method can accurately classify AD from EEG-FMs with up to %99 accuracy, precision, and recall with loss values as low as 0.01. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.description.sponsorshipIzmir University of Economics, (2022-07)en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer’s Dementia (AD)en_US
dc.subjectCNNen_US
dc.subjectdeep learningen_US
dc.subjectEEG feature maps (EEG-FM)en_US
dc.subjectBrain mappingen_US
dc.subjectDeep learningen_US
dc.subjectFrequency shift keyingen_US
dc.subjectImage segmentationen_US
dc.subjectMultilayer neural networksen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeuronsen_US
dc.subjectPulse amplitude modulationen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimer’s dementiaen_US
dc.subjectCognitive abilityen_US
dc.subjectConditionen_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectElectroencephalogram feature mapen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectFeature mapen_US
dc.subjectQuality of lifeen_US
dc.subjectConvolutional neural networksen_US
dc.titleDetection of Alzheimer’s Dementia by Using EEG Feature Maps and Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-85208436535en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215310544-
dc.authorscopusid57195223021-
dc.authorscopusid57211987353-
dc.authorscopusid35617283100-
dc.identifier.startpage1397en_US
dc.identifier.endpage1401en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.