Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5615
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akbugday S.P. | - |
dc.contributor.author | Cura O.K. | - |
dc.contributor.author | Akbugday B. | - |
dc.contributor.author | Akan A. | - |
dc.date.accessioned | 2024-11-25T16:53:56Z | - |
dc.date.available | 2024-11-25T16:53:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 978-946459361-7 | - |
dc.identifier.issn | 2219-5491 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5615 | - |
dc.description | 32nd European Signal Processing Conference, EUSIPCO 2024 -- 26 August 2024 through 30 August 2024 - Lyon -- 203514 | en_US |
dc.description.abstract | One of the most frequent neurological conditions that impair cognitive abilities and have a major negative impact on quality of life is dementia. In this work, a novel approach for identifying Alzheimer’s disease (AD) by utilizing electroencephalogram (EEG) signals via signal processing techniques is proposed. Five spectral domain characteristics are computed for one-minute EEG segment duration using EEG data. Each feature is mapped onto a 9 × 9 matrix called topographic EEG feature maps (EEG-FM) to represent spectral as well as spatial information on the same image. Images were then classified using a 2-layer convolutional neural network (CNN) to classify healthy and AD cases. Results indicate that the constructed CNN generalizes well, and the proposed method can accurately classify AD from EEG-FMs with up to %99 accuracy, precision, and recall with loss values as low as 0.01. © 2024 European Signal Processing Conference, EUSIPCO. All rights reserved. | en_US |
dc.description.sponsorship | Izmir University of Economics, (2022-07) | en_US |
dc.language.iso | en | en_US |
dc.publisher | European Signal Processing Conference, EUSIPCO | en_US |
dc.relation.ispartof | European Signal Processing Conference | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Alzheimer’s Dementia (AD) | en_US |
dc.subject | CNN | en_US |
dc.subject | deep learning | en_US |
dc.subject | EEG feature maps (EEG-FM) | en_US |
dc.subject | Brain mapping | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Frequency shift keying | en_US |
dc.subject | Image segmentation | en_US |
dc.subject | Multilayer neural networks | en_US |
dc.subject | Neurodegenerative diseases | en_US |
dc.subject | Neurons | en_US |
dc.subject | Pulse amplitude modulation | en_US |
dc.subject | Alzheimer | en_US |
dc.subject | Alzheimer’s dementia | en_US |
dc.subject | Cognitive ability | en_US |
dc.subject | Condition | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Electroencephalogram feature map | en_US |
dc.subject | Electroencephalogram signals | en_US |
dc.subject | Feature map | en_US |
dc.subject | Quality of life | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.title | Detection of Alzheimer’s Dementia by Using EEG Feature Maps and Deep Learning | en_US |
dc.type | Conference Object | en_US |
dc.identifier.scopus | 2-s2.0-85208436535 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57215310544 | - |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 57211987353 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.startpage | 1397 | en_US |
dc.identifier.endpage | 1401 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.