Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5805
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Beck, Christian | - |
dc.contributor.author | Tirnakli, Ugur | - |
dc.contributor.author | Tsallis, Constantino | - |
dc.date.accessioned | 2025-01-25T17:04:31Z | - |
dc.date.available | 2025-01-25T17:04:31Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2470-0045 | - |
dc.identifier.issn | 2470-0053 | - |
dc.identifier.uri | https://doi.org/10.1103/PhysRevE.110.064213 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5805 | - |
dc.description.abstract | The Gauss map (or continued fraction map) is an important dissipative one-dimensional discrete-time dynamical system that exhibits chaotic behavior, and it generates a symbolic dynamics consisting of infinitely many different symbols. Here we introduce a generalization of the Gauss map, which is given by xt+1 = 1 where alpha 0 is a parameter and xt is an element of [0, 1] (t = 0, 1, 2, 3, ...). The symbol [... ] denotes the integer part. This map reduces to the ordinary Gauss map for alpha = 1. The system exhibits a sudden "jump into chaos" at the critical parameter value alpha = alpha c equivalent to 0.241485141808811 ... which we analyze in detail in this paper. Several analytical and numerical results are established for this new map as a function of the parameter alpha. In particular, we show that, at the critical point, the invariant density approaches a q-Gaussian with q = 2 (i.e., the Cauchy distribution), which becomes infinitely narrow as alpha -* alpha c+. Moreover, in the chaotic region for large values of the parameter alpha we analytically derive approximate formulas for the invariant density, by solving the corresponding Perron-Frobenius equation. For alpha -* infinity the uniform density is approached. We provide arguments that some features of this transition scenario are universal and are relevant for other, more general systems as well. | en_US |
dc.description.sponsorship | Izmir University of Economics Research Projects Fund [BAP-2024-07]; CNPq; FAPERJ; ISPF-ODA grant of QMUL; International Excellence Fellowship of KIT Karlsruhe | en_US |
dc.description.sponsorship | The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) . U.T. is a member of the Science Academy, Bilim Akademisi, Turkey and supported by the Izmir University of Economics Research Projects Fund under Grant No. BAP-2024-07. C.T. is partially supported by CNPq and FAPERJ (Brazilian agencies) . C.B. is supported by an ISPF-ODA grant of QMUL. He is also supported by an International Excellence Fellowship of KIT Karlsruhe. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Physical Soc | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | Generalization of the Gauss Map: a Jump Into Chaos With Universal Features | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1103/PhysRevE.110.064213 | - |
dc.identifier.scopus | 2-s2.0-85212412347 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 58424832800 | - |
dc.authorscopusid | 6701713333 | - |
dc.authorscopusid | 7006572244 | - |
dc.identifier.volume | 110 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.wos | WOS:001379507600002 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q1 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 02.03. Physics | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.