Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5805Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Beck, Christian | - |
| dc.contributor.author | Tirnakli, Ugur | - |
| dc.contributor.author | Tsallis, Constantino | - |
| dc.date.accessioned | 2025-01-25T17:04:31Z | - |
| dc.date.available | 2025-01-25T17:04:31Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.issn | 2470-0045 | - |
| dc.identifier.issn | 2470-0053 | - |
| dc.identifier.uri | https://doi.org/10.1103/PhysRevE.110.064213 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/5805 | - |
| dc.description.abstract | The Gauss map (or continued fraction map) is an important dissipative one-dimensional discrete-time dynamical system that exhibits chaotic behavior, and it generates a symbolic dynamics consisting of infinitely many different symbols. Here we introduce a generalization of the Gauss map, which is given by xt+1 = 1 where alpha 0 is a parameter and xt is an element of [0, 1] (t = 0, 1, 2, 3, ...). The symbol [... ] denotes the integer part. This map reduces to the ordinary Gauss map for alpha = 1. The system exhibits a sudden "jump into chaos" at the critical parameter value alpha = alpha c equivalent to 0.241485141808811 ... which we analyze in detail in this paper. Several analytical and numerical results are established for this new map as a function of the parameter alpha. In particular, we show that, at the critical point, the invariant density approaches a q-Gaussian with q = 2 (i.e., the Cauchy distribution), which becomes infinitely narrow as alpha -* alpha c+. Moreover, in the chaotic region for large values of the parameter alpha we analytically derive approximate formulas for the invariant density, by solving the corresponding Perron-Frobenius equation. For alpha -* infinity the uniform density is approached. We provide arguments that some features of this transition scenario are universal and are relevant for other, more general systems as well. | en_US |
| dc.description.sponsorship | Izmir University of Economics Research Projects Fund [BAP-2024-07]; CNPq; FAPERJ; ISPF-ODA grant of QMUL; International Excellence Fellowship of KIT Karlsruhe | en_US |
| dc.description.sponsorship | The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) . U.T. is a member of the Science Academy, Bilim Akademisi, Turkey and supported by the Izmir University of Economics Research Projects Fund under Grant No. BAP-2024-07. C.T. is partially supported by CNPq and FAPERJ (Brazilian agencies) . C.B. is supported by an ISPF-ODA grant of QMUL. He is also supported by an International Excellence Fellowship of KIT Karlsruhe. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Amer Physical Soc | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | Generalization of the Gauss Map: a Jump Into Chaos With Universal Features | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1103/PhysRevE.110.064213 | - |
| dc.identifier.scopus | 2-s2.0-85212412347 | - |
| dc.department | İzmir Ekonomi Üniversitesi | en_US |
| dc.authorscopusid | 58424832800 | - |
| dc.authorscopusid | 6701713333 | - |
| dc.authorscopusid | 7006572244 | - |
| dc.identifier.volume | 110 | en_US |
| dc.identifier.issue | 6 | en_US |
| dc.identifier.wos | WOS:001379507600002 | - |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.identifier.scopusquality | Q2 | - |
| dc.identifier.wosquality | Q1 | - |
| dc.description.woscitationindex | Science Citation Index Expanded | - |
| item.cerifentitytype | Publications | - |
| item.grantfulltext | none | - |
| item.languageiso639-1 | en | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| crisitem.author.dept | 02.03. Physics | - |
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection | |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Nov 5, 2025
Page view(s)
148
checked on Nov 3, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.