Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeck, Christian-
dc.contributor.authorTirnakli, Ugur-
dc.contributor.authorTsallis, Constantino-
dc.date.accessioned2025-01-25T17:04:31Z-
dc.date.available2025-01-25T17:04:31Z-
dc.date.issued2024-
dc.identifier.issn2470-0045-
dc.identifier.issn2470-0053-
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.110.064213-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5805-
dc.description.abstractThe Gauss map (or continued fraction map) is an important dissipative one-dimensional discrete-time dynamical system that exhibits chaotic behavior, and it generates a symbolic dynamics consisting of infinitely many different symbols. Here we introduce a generalization of the Gauss map, which is given by xt+1 = 1 where alpha 0 is a parameter and xt is an element of [0, 1] (t = 0, 1, 2, 3, ...). The symbol [... ] denotes the integer part. This map reduces to the ordinary Gauss map for alpha = 1. The system exhibits a sudden "jump into chaos" at the critical parameter value alpha = alpha c equivalent to 0.241485141808811 ... which we analyze in detail in this paper. Several analytical and numerical results are established for this new map as a function of the parameter alpha. In particular, we show that, at the critical point, the invariant density approaches a q-Gaussian with q = 2 (i.e., the Cauchy distribution), which becomes infinitely narrow as alpha -* alpha c+. Moreover, in the chaotic region for large values of the parameter alpha we analytically derive approximate formulas for the invariant density, by solving the corresponding Perron-Frobenius equation. For alpha -* infinity the uniform density is approached. We provide arguments that some features of this transition scenario are universal and are relevant for other, more general systems as well.en_US
dc.description.sponsorshipIzmir University of Economics Research Projects Fund [BAP-2024-07]; CNPq; FAPERJ; ISPF-ODA grant of QMUL; International Excellence Fellowship of KIT Karlsruheen_US
dc.description.sponsorshipThe numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) . U.T. is a member of the Science Academy, Bilim Akademisi, Turkey and supported by the Izmir University of Economics Research Projects Fund under Grant No. BAP-2024-07. C.T. is partially supported by CNPq and FAPERJ (Brazilian agencies) . C.B. is supported by an ISPF-ODA grant of QMUL. He is also supported by an International Excellence Fellowship of KIT Karlsruhe.en_US
dc.language.isoenen_US
dc.publisherAmer Physical Socen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleGeneralization of the Gauss Map: a Jump Into Chaos With Universal Featuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.110.064213-
dc.identifier.scopus2-s2.0-85212412347-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58424832800-
dc.authorscopusid6701713333-
dc.authorscopusid7006572244-
dc.identifier.volume110en_US
dc.identifier.issue6en_US
dc.identifier.wosWOS:001379507600002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairetypeArticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept02.03. Physics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.