Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorkmaz, I.-
dc.contributor.authorSoygazi, F.-
dc.date.accessioned2025-01-25T17:06:41Z-
dc.date.available2025-01-25T17:06:41Z-
dc.date.issued2024-
dc.identifier.isbn979-833152981-9-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755310-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5853-
dc.description.abstractComputer aided detection of diseases using machine learning mechanisms on medical images has been an interesting applied research topic in both academia and health sector. Practical studies with the aim of improving the process of decision on the diagnosis of the diseases via accurate classification of the medical images would be benefit of the medical doctors. This paper presents an investigation on the classification of gastrointestinal images using deep learning models. The labeled medical images used in the experiments are publicly available within the Kvasir dataset on Kaggle. The deep learning approaches applied through the experiments are based on the following Convolutional Neural Network architectures used with transfer learning: VGG19, ResNet50V2, ResNet152V2, EfficientNetV2B0, EfficientNetV2B3, InceptionV3, DenseNet201, Xception. The performances of these different architectures on learning the training dataset and classifying the test images are evaluated in terms of the following metrics: accuracy, precision, recall, and F1-score. Regarding the results of the experiments conducted using the same dataset on different deep learning models, VGG19 model outperformed the others with the prediction accuracy ratio of 88.6%. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learning Architecturesen_US
dc.subjectGastrointestinal Disease Detectionen_US
dc.subjectImage Classificationen_US
dc.subjectMachine Learningen_US
dc.subjectTransfer Learningen_US
dc.titleGastrointestinal Image Classification Using Deep Learning Architectures via Transfer Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755310-
dc.identifier.scopus2-s2.0-85212670218-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid25641368900-
dc.authorscopusid57220960947-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.