Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBasut, Sudenaz-
dc.contributor.authorKurtbas, Yagmur-
dc.contributor.authorGuler, Nilay-
dc.contributor.authorOkur, Erdem-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2025-01-25T17:06:41Z-
dc.date.available2025-01-25T17:06:41Z-
dc.date.issued2024-
dc.identifier.isbn9798331529819-
dc.identifier.isbn9798331529826-
dc.identifier.issn2687-7775-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755241-
dc.description.abstractSkin cancer, particularly melanoma, is a major public health concern due to its high fatality rate. Early diagnosis is crucial for improving patient outcomes, and advances in computer-aided diagnostic systems based on deep learning have showed promise in increasing diagnostic accuracy. This study examines two methods for handling the multi-class classification issue in skin cancer diagnosis. The first strategy utilizes a single EfficientNet-b0 model to classify all classes at once, whereas the second approach, that can be thought as "waterfall" method, employs a sequence of binary classifiers, each designed to detect one specific class at a time. Both techniques were evaluated on the ISIC 2018 dataset, and the findings show that the waterfall like strategy improves classification accuracy by around 8%. This study illustrates the potential benefits of sequential binary classification in dealing with complicated multi-class problems in medical image analysis especially for skin cancer; nevertheless, more research with other metrics is required to corroborate these findings and explore different network models.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYEen_US
dc.relation.ispartofseriesMedical Technologies National Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSkin Canceren_US
dc.subjectMelanomaen_US
dc.subjectMulti-Classen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectEfficientneten_US
dc.titleA Comparative Study on Skin Cancer Detection: Multi-Class Vs. Binaryen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755241-
dc.identifier.scopus2-s2.0-85212690042-
local.message.claim2025-04-17T13:08:52.986+0300|||rp00186|||submit_approve|||dc_contributor_author|||None*
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidOkur, Erdem/Hnq-7380-2023-
dc.authorscopusid59481530800-
dc.authorscopusid59481947100-
dc.authorscopusid59481947200-
dc.authorscopusid57195215602-
dc.authorscopusid57219464962-
dc.identifier.wosWOS:001454367500005-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5855.pdf
  Restricted Access
254.59 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

178
checked on Oct 6, 2025

Download(s)

6
checked on Oct 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.