Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5855
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Basut, Sudenaz | - |
dc.contributor.author | Kurtbas, Yagmur | - |
dc.contributor.author | Guler, Nilay | - |
dc.contributor.author | Okur, Erdem | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2025-01-25T17:06:41Z | - |
dc.date.available | 2025-01-25T17:06:41Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798331529819 | - |
dc.identifier.isbn | 9798331529826 | - |
dc.identifier.issn | 2687-7775 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO63488.2024.10755241 | - |
dc.description.abstract | Skin cancer, particularly melanoma, is a major public health concern due to its high fatality rate. Early diagnosis is crucial for improving patient outcomes, and advances in computer-aided diagnostic systems based on deep learning have showed promise in increasing diagnostic accuracy. This study examines two methods for handling the multi-class classification issue in skin cancer diagnosis. The first strategy utilizes a single EfficientNet-b0 model to classify all classes at once, whereas the second approach, that can be thought as "waterfall" method, employs a sequence of binary classifiers, each designed to detect one specific class at a time. Both techniques were evaluated on the ISIC 2018 dataset, and the findings show that the waterfall like strategy improves classification accuracy by around 8%. This study illustrates the potential benefits of sequential binary classification in dealing with complicated multi-class problems in medical image analysis especially for skin cancer; nevertheless, more research with other metrics is required to corroborate these findings and explore different network models. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYE | en_US |
dc.relation.ispartofseries | Medical Technologies National Conference | - |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Skin Cancer | en_US |
dc.subject | Melanoma | en_US |
dc.subject | Multi-Class | en_US |
dc.subject | Convolutional Neural Networks | en_US |
dc.subject | Efficientnet | en_US |
dc.title | A Comparative Study on Skin Cancer Detection: Multi-Class Vs. Binary | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO63488.2024.10755241 | - |
dc.identifier.scopus | 2-s2.0-85212690042 | - |
local.message.claim | 2025-04-17T13:08:52.986+0300|||rp00186|||submit_approve|||dc_contributor_author|||None | * |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorwosid | Okur, Erdem/Hnq-7380-2023 | - |
dc.authorscopusid | 59481530800 | - |
dc.authorscopusid | 59481947100 | - |
dc.authorscopusid | 59481947200 | - |
dc.authorscopusid | 57195215602 | - |
dc.authorscopusid | 57219464962 | - |
dc.identifier.wos | WOS:001454367500005 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 05.04. Software Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.