Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBasut, Sudenaz-
dc.contributor.authorKurtbas, Yagmur-
dc.contributor.authorGuler, Nilay-
dc.contributor.authorOkur, Erdem-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2025-01-25T17:06:41Z-
dc.date.available2025-01-25T17:06:41Z-
dc.date.issued2024-
dc.identifier.isbn9798331529819-
dc.identifier.isbn9798331529826-
dc.identifier.issn2687-7775-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755241-
dc.description.abstractSkin cancer, particularly melanoma, is a major public health concern due to its high fatality rate. Early diagnosis is crucial for improving patient outcomes, and advances in computer-aided diagnostic systems based on deep learning have showed promise in increasing diagnostic accuracy. This study examines two methods for handling the multi-class classification issue in skin cancer diagnosis. The first strategy utilizes a single EfficientNet-b0 model to classify all classes at once, whereas the second approach, that can be thought as "waterfall" method, employs a sequence of binary classifiers, each designed to detect one specific class at a time. Both techniques were evaluated on the ISIC 2018 dataset, and the findings show that the waterfall like strategy improves classification accuracy by around 8%. This study illustrates the potential benefits of sequential binary classification in dealing with complicated multi-class problems in medical image analysis especially for skin cancer; nevertheless, more research with other metrics is required to corroborate these findings and explore different network models.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYEen_US
dc.relation.ispartofseriesMedical Technologies National Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSkin Canceren_US
dc.subjectMelanomaen_US
dc.subjectMulti-Classen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectEfficientneten_US
dc.titleA Comparative Study on Skin Cancer Detection: Multi-Class Vs. Binaryen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755241-
dc.identifier.scopus2-s2.0-85212690042-
local.message.claim2025-04-17T13:08:52.986+0300|||rp00186|||submit_approve|||dc_contributor_author|||None*
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidOkur, Erdem/Hnq-7380-2023-
dc.authorscopusid59481530800-
dc.authorscopusid59481947100-
dc.authorscopusid59481947200-
dc.authorscopusid57195215602-
dc.authorscopusid57219464962-
dc.identifier.wosWOS:001454367500005-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Object-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

128
checked on Jul 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.