Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5864
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOkur, E.-
dc.contributor.authorUnay, D.-
dc.contributor.authorTurkan, M.-
dc.date.accessioned2025-01-25T17:07:21Z-
dc.date.available2025-01-25T17:07:21Z-
dc.date.issued2024-
dc.identifier.isbn979-833152981-9-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755365-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5864-
dc.description.abstractDeath caused by various kinds of cancer is on rise and skin cancer is one of the most common one worldwide. Due to the importance of early detection, dermoscopy is adopted for visualizing skin lesions and computer-aided detection benefits from these dermoscopic images for better diagnosis results. One of the most important phase of automated skin lesion detection or classification is segmentation, but it is a very challenging task because of several artifacts existing on these images. In this paper, a new method to improve skin lesion segmentation from the existing deep network architectures is proposed, based on the fusion of various results produced by existing models on different color channels. Experimental validations demonstrate that the proposed method increases the average accuracy, on lesion segmentation in terms of Sorensen-Dice and Jaccard indices, when compared to conventional techniques. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectColor Channel Fusionen_US
dc.subjectDermoscopyen_US
dc.subjectMelanomaen_US
dc.subjectSegmentationen_US
dc.subjectSkin Canceren_US
dc.titleDermoscopic Lesion Segmentation via Optimal Color Channel Fusionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755365-
dc.identifier.scopus2-s2.0-85212679589-
local.message.claim2025-04-17T13:13:20.784+0300|||rp00186|||submit_approve|||dc_contributor_author|||None*
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195215602-
dc.authorscopusid55922238900-
dc.authorscopusid57219464962-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

42
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.