Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzcan, E.-
dc.contributor.authorBeşer, B.-
dc.contributor.authorAvcı, E.-
dc.contributor.authorKaya, B.-
dc.contributor.authorTopallı, A.K.-
dc.date.accessioned2025-01-25T17:07:21Z-
dc.date.available2025-01-25T17:07:21Z-
dc.date.issued2024-
dc.identifier.isbn979-835037943-3-
dc.identifier.urihttps://doi.org/10.1109/ASYU62119.2024.10756988-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5865-
dc.descriptionIEEE SMC; IEEE Turkiye Sectionen_US
dc.description.abstractNatural disasters are very frequent in Turkiye, therefore it is quite vital to tackle the problems aroused after these disasters. This study proposes a system to reduce the losses caused by the natural disasters and provides a comparison method for the efficient selection of the system components. A database is formed from the tweet samples posted in the aftermath of the previous natural disasters and these tweets are classified in two stages using prompt engineering and large language models. In the first stage, the classification is done based on disaster type such as “earthquake”, “fire” or “flood”, then the tweets in these disaster types are classified for needs such as “search and rescue”, “equipment and food” in the second stage. In order to find the best model for aforementioned classifications, ChatGPT-3.5, fine-tuned ChatGPT-3.5 and ChatGPT-4 are selected and tested. Fine-tuned ChatGPT-3.5 with enhanced prompting is found to have the highest performance with 98.4% average success score for disaster classification. The success rate of the fine-tuned model for classification of needs is calculated as 95.6% in average. This study is expected not only to contribute to the Turkish language processing research area but also to support rescue organisations as well. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectFine Tuningen_US
dc.subjectLarge Language Modelen_US
dc.subjectNatural Disasteren_US
dc.subjectNatural Language Processingen_US
dc.subjectPrompt Engineeringen_US
dc.subjectTurkishen_US
dc.subjectTweeten_US
dc.titlePerformance Comparison Of Large Language Models İn Disaster Related Two-stage Classification Of Tweets Written İn Turkish;en_US
dc.title.alternativetürkçe Yazılmış Tweet İletilerinin Afetle İlgili İki Aşamalı Sınıflandırılmasında Büyük Dil Modellerinin Performans Karşılaştırmasıen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU62119.2024.10756988-
dc.identifier.scopus2-s2.0-85213314622-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid59490320900-
dc.authorscopusid59491600800-
dc.authorscopusid59491177600-
dc.authorscopusid59490103500-
dc.authorscopusid6506871373-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

76
checked on Apr 28, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.