Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbugday, S.P.-
dc.contributor.authorAkbugday, B.-
dc.contributor.authorYeganli, F.-
dc.contributor.authorAkan, A.-
dc.contributor.authorSadikzade, R.-
dc.date.accessioned2025-01-25T17:07:22Z-
dc.date.available2025-01-25T17:07:22Z-
dc.date.issued2024-
dc.identifier.isbn979-833152981-9-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755366-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5870-
dc.description.abstractAccurate detection of human emotion is an important topic for affective computing. Especially with the rise of artificial intelligence in the marketing industry, the tools available are subjective and often heavily dependent on sample sizes and demographics. This study explores the neural responses to olfactory stimuli by analyzing EEG data collected from 57 participants exposed to a perfume scent in correlation with self-reported survey results. The electroencephalogram (EEG) signals were processed to extract time-domain, spectral-domain, and nonlinear features, which were subsequently classified using various machine learning algorithms. The classification outcomes were mapped onto a two-dimensional pleasure-arousal plane, with the Medium Gaussian support vector machine (SVM) achieving the highest performance, including 99.8 % validation accuracy and 100 % test accuracy. These results highlight the significant potential of EEG-based approaches in decoding the neural underpinnings of sensory experiences, with implications for applications in neuromarketing and therapeutic contexts. © 2024 IEEE.en_US
dc.description.sponsorshipIzmir University of Economics, (2022-07)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArousal-Valence Planeen_US
dc.subjectEegen_US
dc.subjectEmotion Recognitionen_US
dc.subjectMachine Learningen_US
dc.subjectNeuromarketingen_US
dc.subjectOlfactory Eegen_US
dc.titleDecoding Olfactory Eeg Signals Using Multi-Domain Features and Machine Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755366-
dc.identifier.scopus2-s2.0-85212699903-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215310544-
dc.authorscopusid57211987353-
dc.authorscopusid56247299800-
dc.authorscopusid35617283100-
dc.authorscopusid58821594100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

30
checked on Mar 10, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.