Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOǧuz, K.-
dc.contributor.authorAslan, A.-
dc.contributor.authorEvcin, E.-
dc.contributor.authorÖzoǧul, E.-
dc.contributor.authorSönmez, M.E.-
dc.contributor.authorKarabacak, Y.-
dc.contributor.authorKaragonlar, Z.F.-
dc.date.accessioned2025-01-25T17:07:22Z-
dc.date.available2025-01-25T17:07:22Z-
dc.date.issued2024-
dc.identifier.isbn979-833152981-9-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755358-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5873-
dc.description.abstract3D spheroids that are able to mimic the microenvironment of tumors effectively have emerged as significant structures in cancer biology and drug development. This study aims to help cancer researchers monitor the changes in human liver cancer spheroids in response to drug treatment by offering a software tool for evaluating cell viability within 3D spheroids. A dataset of spheroid images are collected, processed, and classified using alternative machine learning models constructed with Random Forest, Logistic Regression, Support Vector Machine and Extreme Gradient Boosting methods. The classification performances of the models are evaluated in terms of the prediction accuracy, precision, recall, and F1-score values. Based on the test experiments conducted, Extreme Gradient Boosting model achieved the highest ratios for all of the performance metrics. Furthermore, a standalone desktop application is implemented to perform analyses of the images with the help of its user-friendly interface. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject3D Spheroidsen_US
dc.subjectImage Classificationen_US
dc.subjectImage Processingen_US
dc.subjectMachine Learningen_US
dc.subjectSpheroid Behavioren_US
dc.subjectViability Analysisen_US
dc.titleViability Analysis of Drug-Treated Tumor Spheroids Using Machine Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755358-
dc.identifier.scopus2-s2.0-85212707597-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid54902980200-
dc.authorscopusid59481906400-
dc.authorscopusid59481906500-
dc.authorscopusid59482315200-
dc.authorscopusid59482315300-
dc.authorscopusid59481799000-
dc.authorscopusid25641368900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

24
checked on Mar 10, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.