Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzunbayir, S.-
dc.contributor.authorKurtel, K.-
dc.date.accessioned2025-02-25T19:31:39Z-
dc.date.available2025-02-25T19:31:39Z-
dc.date.issued2024-
dc.identifier.isbn9798350365887-
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773427-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5931-
dc.description.abstractMutation testing is a widely accepted method for assessing the effectiveness of software test suites. It focuses on evaluating how well a test suite can identify deliberately introduced faults, known as mutations, in the code, helping to reveal potential vulnerabilities. Traditional mutation testing approaches, however, often encounter significant issues such as high computational demands and limited fault detection range. Recently, there has been an increasing interest in integrating artificial intelligence (AI) into mutation testing to address these challenges. AI can enhance mutation testing by incorporating intelligent algorithms and automating various tasks. It can analyze the codebase, identify key program components, and strategically select mutation operators that are more likely to detect faults. This paper explores the fundamental concepts of mutation testing, relevant research, and innovations in combining AI with mutation testing, focusing on the challenges and the most effective models currently available. By integrating AI, mutation testing has seen improvements in both fault detection and computational efficiency. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectMutation Testingen_US
dc.subjectSoftware Testingen_US
dc.subjectTest Automationen_US
dc.titleMutation Testing Reinvented: How Artificial Intelligence Complements Classic Methodsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK63289.2024.10773427-
dc.identifier.scopus2-s2.0-85215533527-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57205586949-
dc.authorscopusid37107875500-
dc.identifier.startpage298en_US
dc.identifier.endpage303en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

4
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.