Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/6054
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPoliti, Ruti R.-
dc.contributor.authorTanyel, Serhan-
dc.date.accessioned2025-04-25T19:49:48Z-
dc.date.available2025-04-25T19:49:48Z-
dc.date.issued2025-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3549970-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/6054-
dc.description.abstractClosely spaced intersections play a key role in traffic flow management. This study aims to model different traffic related parameters to minimize the delay of a closely spaced intersection by optimizing the green time ratio with the help of the genetic algorithm. The factors influencing optimization were selected as the distance between two adjacent intersections, cycle time, degree of saturation, green time ratio, volume, and the queue length-to-distance ratio, which is considered the Index parameter. The dataset was calibrated, validated, and used to simulate the analysis of traffic scenarios using SIDRA Intersection. To provide a clearer analysis, the k-means clustering algorithm was applied to divide the distances into three clusters. Among these clusters, the distance range between 110 and 160 meters is identified as the transition zone. The optimal green time ratio to minimize delay value for closely spaced intersection clusters was determined within a range of 0.58 to 0.69. To ensure a more comprehensive analysis, these values are used to examine their impact on delays. For this reason, the scenarios were restructured again with SIDRA using the newly optimized values to evaluate whether there is any reduction in the traffic-related parameters. The delay values and their temporal fluctuations showed significant improvements with this hybrid approach. The optimized green time ratios reduced delay, degree of saturation, and CO2 emissions by 8.95%, 8%, and 4.72% at the downstream intersection, and by 6.86%, 6.16%, and 7.09% at the upstream intersection, respectively.en_US
dc.language.isoenen_US
dc.publisherIEEE-inst Electrical Electronics Engineers incen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDelaysen_US
dc.subjectOptimizationen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectRoadsen_US
dc.subjectGreen Productsen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectVehicle Dynamicsen_US
dc.subjectTraffic Congestionen_US
dc.subjectAir Pollutionen_US
dc.subjectIndexesen_US
dc.subjectSignalized Closely Spaced Intersectionen_US
dc.subjectDelayen_US
dc.subjectOptimizationen_US
dc.subjectK-Means Cluster Analysisen_US
dc.subjectGenetic Algorithmen_US
dc.titleMinimizing Delay at Closely Spaced Signalized Intersections Through Green Time Ratio Optimization: a Hybrid Approach With K-Means Clustering and Genetic Algorithmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2025.3549970-
dc.identifier.scopus2-s2.0-105001084537-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid56607079800-
dc.authorscopusid9843001300-
dc.identifier.volume13en_US
dc.identifier.startpage43981en_US
dc.identifier.endpage43999en_US
dc.identifier.wosWOS:001445059300008-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept05.03. Civil Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

6
checked on May 12, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.