Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/6232
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomay-Altas, Melis-
dc.contributor.authorKalkan, Mirkan Yusuf-
dc.contributor.authorFawzy, Diaa E.-
dc.date.accessioned2025-06-25T17:57:26Z-
dc.date.available2025-06-25T17:57:26Z-
dc.date.issued2025-
dc.identifier.issn1474-7065-
dc.identifier.issn1873-5193-
dc.identifier.urihttps://doi.org/10.1016/j.pce.2025.103966-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/6232-
dc.description.abstractWestern Anatolia, T & uuml;rkiye, is renowned for its diverse geothermal resources, encompassing high, medium, and low enthalpy systems. While these systems are valuable for energy production and economic development, they are also associated with significant environmental challenges, particularly high concentration arsenic and boron contamination. This study highlights critical hotspots, including Sandikli (27 mg/L) and Banaz-Hamambogazi (95.64 mg/L), with arsenic levels far exceeding the World Health Organization's (WHO) maximum permissible limit of 10 ppb. Such contamination poses significant risks to water quality, agriculture, and public health, especially in major agricultural provinces like Aydin and Manisa. To address these challenges, machine learning models were applied to classify arsenic concentrations. Ensemble methods, including AdaBoost (ABC) and Extra Trees (ETC) classifiers, consistently outperformed others, showing high accuracy of about 97 % in distinguishing geochemical signatures and predicting arsenic levels. In contrast, the k-Nearest Neighbors Classifier (KNNC) proved less effective, with frequent misclassifications. The combination of machine learning and meta-analysis provided a robust framework for identifying spatial and temporal patterns of contamination, offering valuable insights for environmental monitoring. This approach not only enhanced the understanding of arsenic distribution in geothermal systems but also provided actionable insights for mitigating contamination risks. The findings underscore the importance of combining computational techniques with environmental geochemistry to improve the management of geothermal wastewater. Future research should expand these methodologies to other regions and contaminants, leveraging machine learning to develop more effective environmental protection strategies. This study demonstrates the potential of data-driven approaches to address critical environmental issues and supports sustainable development in geothermal-rich areas.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeothermal Energyen_US
dc.subjectArsenicen_US
dc.subjectContaminationen_US
dc.subjectMeta-Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectWestern Anatoliaen_US
dc.subjectTurkiyeen_US
dc.titleA Data-Driven Approach To Arsenic Classification in Groundwater in Geothermal Systems: Meta-Analysis and Machine Learning Applications in Western Anatolia, Turkiyeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.pce.2025.103966-
dc.identifier.scopus2-s2.0-105005283806-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidSomay-Altas, Melis/G-2890-2017-
dc.authorscopusid59900266700-
dc.authorscopusid58312231400-
dc.authorscopusid23011278600-
dc.identifier.volume139en_US
dc.identifier.wosWOS:001496887100001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextWith Fulltext-
item.grantfulltextreserved-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept05.01. Aerospace Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
6232.pdf
  Restricted Access
6.66 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

70
checked on Sep 8, 2025

Download(s)

2
checked on Sep 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.