Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/6301Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kilickaya, Sertac | - |
| dc.contributor.author | Ahishali, Mete | - |
| dc.contributor.author | Celebioglu, Cansu | - |
| dc.contributor.author | Sohrab, Fahad | - |
| dc.contributor.author | Eren, Levent | - |
| dc.contributor.author | Ince, Turker | - |
| dc.contributor.author | Gabbouj, Moncef | - |
| dc.date.accessioned | 2025-07-25T16:40:27Z | - |
| dc.date.available | 2025-07-25T16:40:27Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.isbn | 9798331508500 | - |
| dc.identifier.isbn | 9798331508494 | - |
| dc.identifier.uri | https://doi.org/10.1109/CIESCompanion65073.2025.11010815 | - |
| dc.description.abstract | The frequent breakdowns and malfunctions of industrial equipment have driven increasing interest in utilizing cost-effective and easy-to-deploy sensors, such as microphones, for effective condition monitoring of machinery. Microphones offer a low-cost alternative to widely used condition monitoring sensors with their high bandwidth and capability to detect subtle anomalies that other sensors might have less sensitivity. In this study, we investigate malfunctioning industrial machines to evaluate and compare anomaly detection performance across different machine types and fault conditions. Log-Mel spectrograms of machinery sound are used as input, and the performance is evaluated using the area under the curve (AUC) score for two different methods: baseline dense autoencoder (AE) and oneclass deep Support Vector Data Description (deep SVDD) with different subspace dimensions. Our results over the MIMII sound dataset demonstrate that the deep SVDD method with a subspace dimension of 2 provides superior anomaly detection performance, achieving average AUC scores of 0.84, 0.80, and 0.69 for 6 dB, 0 dB, and -6 dB signal-to-noise ratios (SNRs), respectively, compared to 0.82, 0.72, and 0.64 for the baseline model. Moreover, deep SVDD requires 7.4 times fewer trainable parameters than the baseline dense AE, emphasizing its advantage in both effectiveness and computational efficiency. | en_US |
| dc.description.sponsorship | NSF-Business Finland | en_US |
| dc.description.sponsorship | This work was supported by the NSF-Business Finland project AMALIA and H2TRAIN research program under the Horizon Europe Framework. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2025 Symposium on Computational Intelligence on Engineering/Cyber Physical Systems-CIES -- MAR 17-20, 2025 -- Trondheim, NORWAY | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Acoustic Monitoring | en_US |
| dc.subject | Anomaly Detection | en_US |
| dc.subject | Deep Support Vector Data Description | en_US |
| dc.subject | One-Class Classification | en_US |
| dc.title | Audio-Based Anomaly Detection in Industrial Machines Using Deep One-Class Support Vector Data Description | en_US |
| dc.type | Conference Object | en_US |
| dc.identifier.doi | 10.1109/CIESCompanion65073.2025.11010815 | - |
| dc.identifier.scopus | 2-s2.0-105010107304 | - |
| local.message.claim | 2025-07-29T15:48:35.552+0300|||rp00060|||submit_approve|||dc_contributor_author|||None | * |
| dc.department | İzmir Ekonomi Üniversitesi | en_US |
| dc.identifier.wos | WOS:001555584000001 | - |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.identifier.scopusquality | N/A | - |
| dc.identifier.wosquality | N/A | - |
| dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
| item.grantfulltext | none | - |
| item.languageiso639-1 | en | - |
| item.fulltext | No Fulltext | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| item.openairetype | Conference Object | - |
| crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
| crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
| crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection | |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.