Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/6357Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Sahin, M. Faruk | - |
| dc.contributor.author | Yeganli, S. Faegheh | - |
| dc.contributor.author | Uludag, Goenuel | - |
| dc.contributor.author | Yeganli, Faezeh | - |
| dc.contributor.author | Anka, Ferzat | - |
| dc.date.accessioned | 2025-08-25T16:58:31Z | - |
| dc.date.available | 2025-08-25T16:58:31Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.issn | 1863-1703 | - |
| dc.identifier.issn | 1863-1711 | - |
| dc.identifier.uri | https://doi.org/10.1007/s11760-025-04557-y | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/6357 | - |
| dc.description.abstract | Brain tumor segmentation plays a vital role in medical imaging, enabling accurate diagnosis and guiding treatment decisions. Despite notable progress driven by deep neural networks (DNNs) and multi-parametric magnetic resonance imaging (mpMRI), the complexity and heterogeneity of tumor tissues make precise segmentation a persistent challenge. In this paper, we propose a novel method that integrates Vertically grouped Voxel Feature Extraction (VFE), wavelet-based multi-resolution detail enhancement, and a modified UNet-VGG16+ architecture. The VFE component enhances tumor region contrast and suppresses irrelevant background areas by grouping column-wise voxel intensities within each slice. As a result, the average image contrast is increased by 23.78%, thereby improving the ability of Deep Neural Networks (DNNs) to focus on tumor regions. The wavelet-based enhancement captures multi-resolution details to more clearly delineate tumor boundaries while also reducing noise. The UNet-VGG16+ architecture leverages transfer learning to efficiently process these enhanced features for accurate segmentation. Extensive experiments on the BraTS21 dataset demonstrate that the proposed method achieves a mean Dice score of 94.69%, with segmentation accuracies of 93.3%, 93.1%, and 94.4% for Enhancing Tumor (ET), Whole Tumor (WT), and Tumor Core (TC), respectively. Comparative evaluations show consistent and statistically significant improvements over state-of-the-art models (p< 0.001). Further validation on the BraTS18 dataset confirms the model's generalizability. These results highlight the effectiveness of combining spatially structured voxel aggregation with frequency-domain analysis for robust and high-precision brain tumor segmentation. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Springer London Ltd | en_US |
| dc.relation.ispartof | Signal Image and Video Processing | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Brain Tumor Segmentation | en_US |
| dc.subject | Brats21 | en_US |
| dc.subject | Deep Neural Network | en_US |
| dc.subject | Vertically Grouped Voxel Feature Extraction | en_US |
| dc.subject | Wavelet | en_US |
| dc.subject | Unet-Vgg16+ | en_US |
| dc.title | Unified Deep Learning Method for Accurate Brain Tumor Segmentation Using Vertical Voxel Grouping and Wavelet Features | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s11760-025-04557-y | - |
| dc.identifier.scopus | 2-s2.0-105012213887 | - |
| dc.department | İzmir Ekonomi Üniversitesi | en_US |
| dc.authorscopusid | 59723302200 | - |
| dc.authorscopusid | 57194275954 | - |
| dc.authorscopusid | 19639667600 | - |
| dc.authorscopusid | 56247299800 | - |
| dc.authorscopusid | 60022991300 | - |
| dc.identifier.volume | 19 | en_US |
| dc.identifier.issue | 11 | en_US |
| dc.identifier.wos | WOS:001541600300039 | - |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.identifier.scopusquality | Q2 | - |
| dc.identifier.wosquality | Q3 | - |
| dc.description.woscitationindex | Science Citation Index Expanded | - |
| item.cerifentitytype | Publications | - |
| item.openairetype | Article | - |
| item.languageiso639-1 | en | - |
| item.fulltext | No Fulltext | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection | |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.