Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/787
Title: Analysis for the identification of an unknown diffusion coefficient via semigroup approach
Authors: Demir, Ali
Özbilge Kahveci, Ebru
Keywords: semigroup approach
coefficient identification
quasi-linear parabolic equation
Publisher: Wiley
Abstract: This paper presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x)) in the inhomogenenous quasi-linear parabolic equation u(t)(x, t) = (k(u(x))u(x)(x, t))(x) + F(u) with the Dirichlet boundary conditions u(0, t)=psi(0),u(1, t)=psi(1) and source function F(u). The main purpose of this paper is to investigate the distinguishability of the input-output mappings Phi[.] : K -> C-1[0, T], psi[.]: K -> C-1[0,T] via sernigroup theory. Copyright (C) 2009 John Wiley & Sons, Ltd.
URI: https://doi.org/10.1002/mma.1141
https://hdl.handle.net/20.500.14365/787
ISSN: 0170-4214
1099-1476
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
787.pdf
  Until 2030-01-01
97.33 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

82
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.