Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/791
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Demir, Ali | - |
dc.contributor.author | Özbilge Kahveci, Ebru | - |
dc.date.accessioned | 2023-06-16T12:47:35Z | - |
dc.date.available | 2023-06-16T12:47:35Z | - |
dc.date.issued | 2007 | - |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.uri | https://doi.org/10.1002/mma.837 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/791 | - |
dc.description.abstract | This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k (u (x, t)) in the quasi-linear parabolic equation u(t) (x, t) = (k(u (x, t))u, (x, t))x, with Dirichlet boundary conditions u(0, t) = psi(0), u(1, t) = psi(1). The main purpose of this paper is to investigate the distinguishability of the input-output mappings phi[center dot] : Kappa -> C-t[0, T], psi[center dot]: -> C-1 [0, T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input-output mappings phi[center dot] and psi[center dot] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t) :=k(u(0, t))u(x)(0, t) or/and h(t) :=k(u(1, t),ux(l, t), the values k(00) and k(01) of the unknown diffusion coefficient k(u(x, t)) at (x, t) = (0, 0) and (x, t) = (1, 0), respectively, can be determined explicitly. In addition to these, the values k(u) (psi(0)) and k(u)(psi(1)) of the unknown coefficient k(u (x, t)) at (x, t) = (0, 0) and (x, t) = (1, 0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input-output mappings phi[center dot]: Kappa -> C-1[0, T], psi[center dot]: Kappa -> C-1 [0, T] are given explicitly in terms of the semigroup. Copyright (D 2007 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley & Sons Ltd | en_US |
dc.relation.ispartof | Mathematıcal Methods in the Applıed Scıences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | semigroup approach | en_US |
dc.subject | coefficient identification | en_US |
dc.subject | parabolic equation | en_US |
dc.title | Semigroup Approach for Identification of the Unknown Diffusion Coefficient in a Quasi-Linear Parabolic Equation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/mma.837 | - |
dc.identifier.scopus | 2-s2.0-34547295088 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Özbilge, Ebru/0000-0002-2998-8134 | - |
dc.authorwosid | DEMİR, Ali/F-5702-2018 | - |
dc.authorscopusid | 56988688100 | - |
dc.authorscopusid | 15081438700 | - |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.startpage | 1283 | en_US |
dc.identifier.endpage | 1294 | en_US |
dc.identifier.wos | WOS:000247881400003 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20300101 | - |
crisitem.author.dept | 02.02. Mathematics | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
17
checked on Apr 16, 2025
WEB OF SCIENCETM
Citations
15
checked on Apr 16, 2025
Page view(s)
124
checked on Apr 14, 2025
Download(s)
2
checked on Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.