Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/792
Title: Identification of the unknown diffusion coefficient in a quasi-linear parabolic equation by semigroup approach with mixed boundary conditions
Authors: Özbilge Kahveci, Ebru
Keywords: semigroup approach
coefficient identification
parabolic equation
Inverse Problems
Uniqueness
Publisher: Wiley-Blackwell
Abstract: In this article, a semigroup approach is presented for the mathematical analysis of the inverse coefficient problems of identifying the unknown diffusion coefficient k(u(x, t)) in the quasi-linear parabolic equation ut (x, t) = (k(u (x, t))u(x) (x, t))(x), with Dirichlet boundary conditions u(x) (0, t) = psi(0), u (1, t) = psi(1). The main purpose of this work is to analyze the distinguishability of the input-output mappings Psi[.]: k -> C(1) [0, T] using semigroup theory. In this article, it is shown that if the null space of semigroups T(t) and S(t) consists of only a zero function, then the input-output mappings Phi[.] and Psi[.] have the distinguishability property. Copyright (c) 2008 John Wiley & Sons, Ltd.
URI: https://doi.org/10.1002/mma.974
https://hdl.handle.net/20.500.14365/792
ISSN: 0170-4214
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
792.pdf
  Until 2030-01-01
103.63 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.