Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/793
Title: Analysis of a semigroup approach in the inverse problem of identifying an unknown coefficient
Authors: Demir, Ali
Özbilge Kahveci, Ebru
Keywords: semigroup approach
coefficient identification
parabolic equation
Publisher: John Wiley & Sons Ltd
Abstract: This article presents a semigroup approach to the mathematical analysis of the inverse coefficient problems of identifying file Unknown coefficient k(u(x)) in file quasi-linear parabolic equation u(t)(x,t) = (k(u(x))u(x)(x,t))(x) +F(x,t), with Dirichlet boundary conditions u(0,t)=psi(0), u(l,t) = psi(1) and funclion F(x,t). The main purpose of this paper is to investigate the distinguishability of the input-out mappings phi[center dot]:k -> C-1[0,T], psi[center dot]:K -> C-1[0,T] via semigroup theory. Copyright (C) 2008 John Wiley & Sons, Ltd.
URI: https://doi.org/10.1002/mma.989
https://hdl.handle.net/20.500.14365/793
ISSN: 0170-4214
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
793.pdf
  Until 2030-01-01
100.51 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 20, 2024

Page view(s)

80
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.