Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmetoğlu Taşdemir, Funda-
dc.date.accessioned2023-06-16T12:47:38Z-
dc.date.available2023-06-16T12:47:38Z-
dc.date.issued2022-
dc.identifier.isbn978-3-031-09176-6-
dc.identifier.isbn978-3-031-09175-9-
dc.identifier.issn2367-3370-
dc.identifier.issn2367-3389-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-09176-6_22-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/816-
dc.description4th International Conference on Intelligent and Fuzzy Systems (INFUS) -- JUL 19-21, 2022 -- Bornova, TURKEYen_US
dc.description.abstractCurrently, one of the most common forms of cancer is breast cancer. In 2020, breast cancer caused 2.3 million cases and approximately 685,000 deaths worldwide. Since breast cancer is the second leading cause of death among women, it is very important to detect whether a biopsy cell is benign or malignant at an early stage so that it is not fatal. However, the breast cancer diagnosis process is quite complex as it consists of several stages, such as collecting and analyzing multivariate samples. These time demanding procedures delay diagnosis and pose a risk for people. On the other hand, the rapid development of Machine Learning (ML) and its applications in healthcare are bringing a new perspective to process and analyze medical big data. In addition, ML techniques help medical experts by analyzing the data in a short time and reduce time pressure on decision making procedures. Taking those into consideration in this study, different ML algorithms are employed for predicting if a cell nucleus is benign or malignant using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. The ML algorithms utilized in this paper are: Support Vector Machines (SVM), Logistic Regression (LR) and Random Forest (RF). Dataset includes 32 attributes with 569 cases consisting of 357 benign and 212 malignant. To improve the accuracy of the results, hyperparameter tuning was done using Grid Search and results are compared. The simulation of algorithms is done by Python Programming language.en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofIntellıgent And Fuzzy Systems: Dıgıtal Acceleratıon And the New Normal, Infus 2022, Vol 2en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learningen_US
dc.subjectClassificationen_US
dc.subjectSupport vector machinesen_US
dc.subjectLogistic regressionen_US
dc.subjectRandom foresten_US
dc.subjectBreast cancer diagnosisen_US
dc.subjectHyper-parameter tuningen_US
dc.subjectGrid searchen_US
dc.titleImproving and Assessing the Prediction Capability of Machine Learning Algorithms for Breast Cancer Diagnosisen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-031-09176-6_22-
dc.identifier.scopus2-s2.0-85135077641en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57820963200-
dc.identifier.volume505en_US
dc.identifier.startpage182en_US
dc.identifier.endpage189en_US
dc.identifier.wosWOS:000889132600022en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
816.pdf
  Restricted Access
1.09 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

74
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.