Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/823
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Metin, Senem Kumova | - |
dc.date.accessioned | 2023-06-16T12:47:39Z | - |
dc.date.available | 2023-06-16T12:47:39Z | - |
dc.date.issued | 2017 | - |
dc.identifier.isbn | 978-3-319-72038-8 | - |
dc.identifier.isbn | 978-3-319-72037-1 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-72038-8_14 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/823 | - |
dc.description | 9th International Conference on Intelligent Human Computer Interaction (IHCI) -- DEC 11-13, 2017 -- Evry, FRANCE | en_US |
dc.description.abstract | Multiword expressions (MWEs) are units in language where multiple words unite without an obvious/known reason. Since MWEs occupy a prominent amount of space in both written and spoken language materials, identification of MWEs is accepted to be an important task in natural language processing. In this paper, considering MWE detection as a binary classification task, we propose to use a semi-supervised learning algorithm, standard co-training [1] Co-training is a semi-supervised method that employs two classifiers with two different views to label unlabeled data iteratively in order to enlarge the training sets of limited size. In our experiments, linguistic and statistical features that distinguish MWEs from random word combinations are utilized as two different views. Two different pairs of classifiers are employed with a group of experimental settings. The tests are performed on a Turkish MWE data set of 3946 positive and 4230 negative MWE candidates. The results showed that the classifier where statistical view is considered succeeds in MWE detection when the training set is enlarged by co-training. | en_US |
dc.description.sponsorship | Telecom SudParis,Pierre & Marie Curie Univ,Univ Evry Val dEssonne | en_US |
dc.description.sponsorship | TUBITAK - The Scientific and Technological Research Council of Turkey [115E469] | en_US |
dc.description.sponsorship | This work is carried under the grant of TUBITAK - The Scientific and Technological Research Council of Turkey to Project No: 115E469, Identification of Multi-word Expressions in Turkish Texts. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.ispartof | Intellıgent Human Computer Interactıon, Ihcı 2017 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Multiword expression | en_US |
dc.subject | Classification | en_US |
dc.subject | Co-training | en_US |
dc.title | Standard Co-Training in Multiword Expression Detection | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1007/978-3-319-72038-8_14 | - |
dc.identifier.scopus | 2-s2.0-85038215750 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 24471923700 | - |
dc.identifier.volume | 10688 | en_US |
dc.identifier.startpage | 178 | en_US |
dc.identifier.endpage | 188 | en_US |
dc.identifier.wos | WOS:000463609300014 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 05.04. Software Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Apr 2, 2025
Page view(s)
92
checked on Mar 31, 2025
Download(s)
16
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.