Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPedamallu, Chandra Sekhar-
dc.contributor.authorÖzdamar, Linet-
dc.date.accessioned2023-06-16T12:47:41Z-
dc.date.available2023-06-16T12:47:41Z-
dc.date.issued2008-
dc.identifier.isbn978-3-540-72959-4-
dc.identifier.issn1619-7127-
dc.identifier.urihttps://doi.org/10.1007/978-3-540-72960-0_1-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/834-
dc.description.abstractThe continuous Constrained Optimization Problem (COP) often occurs in industrial applications. In this study, we compare three novel algorithms developed for solving the COP. The first approach consists of an Interval Partitioning Algorithm (IPA) that is exhaustive in covering the whole feasible space. IPA has the capability of discarding sub-spaces that are sub-optimal and/or infeasible, similar to available Branch and Bound techniques. The difference of IPA lies in its use of Interval Arithmetic rather than conventional bounding techniques described in the literature. The second approach tested here is the novel dual-sequence Simulated Annealing (SA) algorithm that eliminates the use of penalties for constraint handling. Here, we also introduce a hybrid algorithm that integrates SA in IPA (IPA-SA) and compare its performance with stand-alone SA and IPA algorithms. All three methods have a local COP solver, Feasible Sequential Quadratic Programming (FSQP) incorporated so as to identify feasible stationary points. The performances of these three methods are tested on a suite of COP benchmarks and the results are discussed.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofAdvances in Metaheurıstıcs For Hard Optımızatıonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConstrained Global Optimizationen_US
dc.subjectInterval Partitioning Algorithmsen_US
dc.subjectSimulated Annealingen_US
dc.subjectHybrid Algorithmsen_US
dc.titleComparison of Simulated Annealing, Interval Partitioning and Hybrid Algorithms in Constrained Global Optimizationen_US
dc.typeBook Parten_US
dc.identifier.doi10.1007/978-3-540-72960-0_1-
dc.coverage.doi10.1007/978-3-540-72960-0-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidPedamallu, Chandra Sekhar/AAV-6745-2020-
dc.authorwosidPedamallu, Chandra Sekhar/AAV-6723-2020-
dc.identifier.startpage1en_US
dc.identifier.endpage22en_US
dc.identifier.wosWOS:000267892800001en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextembargo_20300101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeBook Part-
crisitem.author.dept03.05. Logistics Management-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
834.pdf
  Until 2030-01-01
1.02 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

66
checked on Nov 25, 2024

Download(s)

2
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.