Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/837
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorZabihi, M.-
dc.contributor.authorKiranyaz, S.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T12:47:41Z-
dc.date.available2023-06-16T12:47:41Z-
dc.date.issued2018-
dc.identifier.isbn978-981-10-5122-7-
dc.identifier.isbn978-981-10-5121-0-
dc.identifier.issn1680-0737-
dc.identifier.urihttps://doi.org/10.1007/978-981-10-5122-7_138-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/837-
dc.descriptionJoint Conference of the European Medical and Biological Engineering Conference (EMBEC) / Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC) -- JUN, 2017 -- Tampere, FINLANDen_US
dc.description.abstractIn this study, in order to find out the best ECG classification performance we realized comparative evaluations among the state-of-the-art classifiers such as Convolutional Neural Networks (CNNs), multi-layer perceptrons (MLPs) and Support Vector Machines (SVMs). Furthermore, we compared the performance of the learned features from the last convolutional layer of trained 1-D CNN classifier against the handcrafted features that are extracted by Principal Component Analysis, Hermite Transform and Dyadic Wavelet Transform. Experimental results over the MIT-BIH arrhythmia benchmark database demonstrate that the single channel (raw ECG data based) shallow 1D CNN classifier over the learned features in general achieves the highest classification accuracy and computational efficiency. Finally, it is observed that the use of the learned features on either SVM or MLP classifiers does not yield any performance improvement.en_US
dc.description.sponsorshipUniv Tampere, BioMediTech Inst,Tampere Univ Technol, BioMediTech Inst,Finnish Soc Med Phys & Med Engn,Int Org Med & Biol Engn,European Alliance Med & Biol Engn & Sci,EMBEC Socen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Singapore Pte Ltden_US
dc.relation.ispartofEmbec & Nbc 2017en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReal-time ECG Classificationen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectlearned and hand-crafted featuresen_US
dc.titleLearned vs. Hand-Designed Features for ECG Beat Classification: A Comprehensive Studyen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-981-10-5122-7_138-
dc.identifier.scopus2-s2.0-85021707201en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid56259806600-
dc.authorscopusid54897751900-
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume65en_US
dc.identifier.startpage551en_US
dc.identifier.endpage554en_US
dc.identifier.wosWOS:000449778900138en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextembargo_20300101-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
837.pdf
  Until 2030-01-01
841.24 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

208
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.