Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/851
Title: Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions
Authors: Bairamov, I
Kotz, S
Keywords: Farlie-Gumbel-Morgenstern class of distributions
characterization
symmetry and dependence
correlation structure
admissible range
Gumbel-Morgenstern Distributions
Publisher: Physica-Verlag Gmbh & Co
Abstract: An extension of FGM class of bivariate distributions with given marginals is presented. For Huang-Kotz FGM distributions some theorems characterizing symmetry and conditions for independence are obtained. The new family of distributions allows us to achieve correlation between the components greater than 0.5.
URI: https://doi.org/10.1007/s001840100158
https://hdl.handle.net/20.500.14365/851
ISSN: 0026-1335
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
851.pdf
  Until 2030-01-01
168.83 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

76
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

73
checked on Nov 20, 2024

Page view(s)

108
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.