Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/856
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T12:47:44Z-
dc.date.available2023-06-16T12:47:44Z-
dc.date.issued2019-
dc.identifier.issn0948-7921-
dc.identifier.issn1432-0487-
dc.identifier.urihttps://doi.org/10.1007/s00202-019-00808-7-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/856-
dc.description.abstractApplication of advanced fault diagnosis and monitoring techniques allows more efficient, reliable and safe operation of many complex industrial systems. Recently, there has been a significant increase in application of various data-driven deep learning models for motor fault detection and diagnosis problems. Due to high computational complexity and large training dataset requirements of deep learning models, in this study, shallow and adaptive 1D convolutional neural networks (CNNs) are applied to real-time detection and classification of broken rotor bars in induction motors. As opposed to traditional fault diagnosis systems with separately designed feature extraction and classification blocks, the proposed system takes directly raw stator current signals as input and it can automatically learn optimal features with the proper training. The other advantages of the proposed approach are (1) its compact architecture configuration performing only 1D convolutions with a set of filters and subsampling, making it suitable for implementing with real-time circuit monitoring, (2) its requirement for a limited size of training dataset for efficient training of the classifier and (3) its cost-effective implementation. Effectiveness and feasibility of the proposed method is validated by applying it to real motor current data from an induction motor under full load.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofElectrıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBroken rotor bar detectionen_US
dc.subjectInduction motorsen_US
dc.subjectConvolutional neural networksen_US
dc.subjectWavelet Packet Decompositionen_US
dc.subjectBearing Damage Detectionen_US
dc.subjectInduction Machinesen_US
dc.subjectSpectral-Analysisen_US
dc.subjectDiagnosisen_US
dc.subjectStatoren_US
dc.subjectTransformen_US
dc.subjectMotorsen_US
dc.titleReal-time broken rotor bar fault detection and classification by shallow 1D convolutional neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00202-019-00808-7-
dc.identifier.scopus2-s2.0-85069740912en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorscopusid56259806600-
dc.identifier.volume101en_US
dc.identifier.issue2en_US
dc.identifier.startpage599en_US
dc.identifier.endpage608en_US
dc.identifier.wosWOS:000487045600026en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
856.pdf
  Restricted Access
1.64 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

29
checked on Nov 20, 2024

Page view(s)

250
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.