Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/857
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzcan, Ibrahim Halil-
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorİnce, Türker-
dc.contributor.authorEren, Levent-
dc.contributor.authorAskar, Murat-
dc.date.accessioned2023-06-16T12:47:45Z-
dc.date.available2023-06-16T12:47:45Z-
dc.date.issued2022-
dc.identifier.issn0948-7921-
dc.identifier.issn1432-0487-
dc.identifier.urihttps://doi.org/10.1007/s00202-021-01309-2-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/857-
dc.description.abstractElectric motors are widely used in many industrial applications on account of stability, solidity and ease of use. Mechanical bearing faults have the highest statistical occurrence percentage among all of the motor fault types. Accurate and advance detection of the bearing faults is critical to avoid unpredicted breakdowns of electric motors. Through early detection of bearing faults, it would be possible to solve the problem at a lower cost by repairing and/or replacing relevant parts. Most of the fault detection works in the literature attempted to detect binary {healthy, faulty} motor fault case based on a single input. In this study, we propose an enhanced performance bearing fault diagnosis system based on multichannel, multilevel 1D-CNN classifier processing vibration data collected from multiple accelerometers mounted on bearings in a test bed. Effectiveness and feasibility of the proposed method are validated by applying it to the benchmark IMS bearing vibration dataset for inner race and rolling element faults and comparing the results with the conventional single-axis data-based fault detection.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofElectrıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMultilevel bearing fault detectionen_US
dc.subjectMulti-channel convolutional neural networksen_US
dc.subjectIntelligent fault detection systemen_US
dc.subjectBroken Rotor Baren_US
dc.subjectWavelet Packet Decompositionen_US
dc.subjectInduction Machinesen_US
dc.subjectDamage Detectionen_US
dc.subjectTurn Insulationen_US
dc.subjectDiagnosisen_US
dc.subjectTransformen_US
dc.subjectSystemen_US
dc.subjectSignalen_US
dc.titleEnhanced bearing fault detection using multichannel, multilevel 1D CNN classifieren_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00202-021-01309-2-
dc.identifier.scopus2-s2.0-85106422832en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorwosidözcan, ibrahim/HJY-9664-2023-
dc.authorscopusid57221815993-
dc.authorscopusid57215653815-
dc.authorscopusid56259806600-
dc.authorscopusid6603027663-
dc.authorscopusid7003498558-
dc.identifier.volume104en_US
dc.identifier.issue2en_US
dc.identifier.startpage435en_US
dc.identifier.endpage447en_US
dc.identifier.wosWOS:000652961300001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
857.pdf
  Restricted Access
1.7 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

39
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 20, 2024

Page view(s)

264
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.