Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGokmen, Y. Gorkem-
dc.contributor.authorYildirim, E. Alper-
dc.date.accessioned2023-06-16T12:47:49Z-
dc.date.available2023-06-16T12:47:49Z-
dc.date.issued2022-
dc.identifier.issn0025-5610-
dc.identifier.issn1436-4646-
dc.identifier.urihttps://doi.org/10.1007/s10107-020-01611-0-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/878-
dc.description.abstractThe problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of positive semidefinite and componentwise nonnegative matrices, one obtains the so-called doubly nonnegative relaxation, whose optimal value yields a lower bound on that of the original problem. We present a full algebraic characterization of the set of instances of standard quadratic programs that admit an exact doubly nonnegative relaxation. This characterization yields an algorithmic recipe for constructing such an instance. In addition, we explicitly identify three families of instances for which the doubly nonnegative relaxation is exact. We establish several relations between the so-called convexity graph of an instance and the tightness of the doubly nonnegative relaxation. We also provide an algebraic characterization of the set of instances for which the doubly nonnegative relaxation has a positive gap and show how to construct such an instance using this characterization.en_US
dc.description.sponsorshipTUBITAK (Turkish Scientific and Technological Research Council) [BDEB 2211-A]en_US
dc.description.sponsorshipThe work of the first author was supported, in part, by TuBTAK (Turkish Scientific and Technological Research Council) PhD Scholarship Program BDEB 2211-A, which is gratefully acknowledged. We are grateful to two anonymous reviewers for their insightful and perceptive comments and suggestions, which considerably improved the exposition.en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofMathematıcal Programmıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStandard quadratic programsen_US
dc.subjectCopositive coneen_US
dc.subjectCompletely positive coneen_US
dc.subjectDoubly nonnegative relaxationen_US
dc.titleOn standard quadratic programs with exact and inexact doubly nonnegative relaxationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10107-020-01611-0-
dc.identifier.scopus2-s2.0-85100083306en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridYildirim, E. Alper/0000-0003-4141-3189-
dc.authoridGokmen, Gorkem/0000-0003-0722-2629-
dc.authorwosidYildirim, E. Alper/F-5483-2011-
dc.authorscopusid57221759899-
dc.authorscopusid57221211024-
dc.identifier.volume193en_US
dc.identifier.issue1en_US
dc.identifier.startpage365en_US
dc.identifier.endpage403en_US
dc.identifier.wosWOS:000608671000002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
878.pdf603.44 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

44
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.