Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/879
Title: Existence results for periodic solutions of integro-dynamic equations on time scales
Authors: Adıvar, Murat
Raffoul, Youssef N.
Keywords: Periodic time scale
Dynamic equation
Volterra integral equation
Sobolev's inequality
Schaefer
Lyapunov
Periodic solution
Publisher: Springer Heidelberg
Abstract: Using the topological degree method and Schaefer's fixed point theorem, we deduce the existence of periodic solutions of nonlinear system of integro-dynamic equations on periodic time scales. Furthermore, we provide several applications to scalar equations, in which we develop a time scale analog of Lyapunov's direct method and prove an analog of Sobolev's inequality on time scales to arrive at a priori bound on all periodic solutions. Therefore, we improve and generalize the corresponding results in Burton et al. (Ann Mat Pura Appl 161: 271-283, 1992)
URI: https://doi.org/10.1007/s10231-008-0088-z
https://hdl.handle.net/20.500.14365/879
ISSN: 0373-3114
1618-1891
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
879.pdf229.2 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

36
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.