Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/925
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKasimbeyli̇, Refail-
dc.date.accessioned2023-06-16T12:47:59Z-
dc.date.available2023-06-16T12:47:59Z-
dc.date.issued2013-
dc.identifier.issn0925-5001-
dc.identifier.urihttps://doi.org/10.1007/s10898-011-9789-8-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/925-
dc.description.abstractThis paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Global Optımızatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSeparable coneen_US
dc.subjectCone separation theoremen_US
dc.subjectAugmented dual conesen_US
dc.subjectSublinear scalarizing functionsen_US
dc.subjectConic scalarization methoden_US
dc.subjectMulti-objective optimizationen_US
dc.subjectProper efficiencyen_US
dc.subjectNonconvex Vector Optimizationen_US
dc.subjectProper Efficiencyen_US
dc.subjectRespecten_US
dc.subjectConesen_US
dc.subjectSeten_US
dc.subjectPreferencesen_US
dc.subjectAssignmenten_US
dc.subjectSeparationen_US
dc.subjectDualityen_US
dc.titleA conic scalarization method in multi-objective optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10898-011-9789-8-
dc.identifier.scopus2-s2.0-84879018733en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409-
dc.authorwosidKasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020-
dc.authorscopusid35146065000-
dc.identifier.volume56en_US
dc.identifier.issue2en_US
dc.identifier.startpage279en_US
dc.identifier.endpage297en_US
dc.identifier.wosWOS:000320117100006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
925.pdf
  Restricted Access
301.66 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

37
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

36
checked on Nov 20, 2024

Page view(s)

34
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.