Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/958
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlmez, Mehmet-
dc.contributor.authorGuzelis, Cuneyt-
dc.date.accessioned2023-06-16T12:48:07Z-
dc.date.available2023-06-16T12:48:07Z-
dc.date.issued2015-
dc.identifier.issn1370-4621-
dc.identifier.issn1573-773X-
dc.identifier.urihttps://doi.org/10.1007/s11063-013-9332-7-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/958-
dc.description.abstractThe paper presents two learning methods for nonlinear system identification. Both methods employ neural network models for representing state and output functions. The first method of learning nonlinear state space is based on using chaotic or noise signals in the training of state neural network so that the state neural network is designed to produce a sequence in a recursive way under the excitement of the system input. The second method of learning nonlinear state space has an observer neural network devoted to estimate the states as a function of the system inputs and the outputs of the output neural network. This observer neural network is trained to produce a state sequence when the output neural network is forced by the same sequence and then the state neural network is trained to produce the estimated states in a recursive way under the excitement of the system input. The developed identification methods are tested on a set of benchmark plants including a non-autonomous chaotic system, i.e. Duffing oscillator. Both proposed methods are observed much superior than well-known identification methods including nonlinear ARX, nonlinear ARMAX, Hammerstein, Wiener, Hammerstein-Wiener, Elman network, state space models with subspace and prediction error methods.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Processıng Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural networksen_US
dc.subjectState spaceen_US
dc.subjectSystem identificationen_US
dc.subjectLearningen_US
dc.subjectChaosen_US
dc.subjectSupport Vector Machinesen_US
dc.subjectNeural-Networksen_US
dc.titleExploiting Chaos in Learning System Identification for Nonlinear State Space Modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11063-013-9332-7-
dc.identifier.scopus2-s2.0-84921068655en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridÖlmez, Mehmet/0000-0002-1296-0581-
dc.authorwosidÖlmez, Mehmet/Q-1886-2019-
dc.authorscopusid36246517900-
dc.authorscopusid55937768800-
dc.identifier.volume41en_US
dc.identifier.issue1en_US
dc.identifier.startpage29en_US
dc.identifier.endpage41en_US
dc.identifier.wosWOS:000347684700002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4317.pdf
  Restricted Access
347.21 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 20, 2024

Page view(s)

66
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.