Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/969
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren, Levent-
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.date.accessioned2023-06-16T12:48:10Z-
dc.date.available2023-06-16T12:48:10Z-
dc.date.issued2019-
dc.identifier.issn1939-8018-
dc.identifier.issn1939-8115-
dc.identifier.urihttps://doi.org/10.1007/s11265-018-1378-3-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/969-
dc.description.abstractTimely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In this study, performance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1D Convolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many studies have developed highly accurate algorithms for detecting bearing faults, their results have generally been limited to relatively small train/test data sets. As opposed to conventional intelligent fault diagnosis systems that usually encapsulate feature extraction, feature selection and classification as distinct blocks, the proposed system takes directly raw time-series sensor data as input and it can efficiently learn optimal features with the proper training. The main advantages of the 1D CNN based approach are 1) its compact architecture configuration (rather than the complex deep architectures) which performs only 1D convolutions making it suitable for real-time fault detection and monitoring, 2) its cost effective and practical real-time hardware implementation, 3) its ability to work without any pre-determined transformation (such as FFT or DWT), hand-crafted feature extraction and feature selection, and 4) its capability to provide efficient training of the classifier with limited size of training data set and limited number of BP iterations. Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Sıgnal Processıng Systems For Sıgnal Image And Vıdeo Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBearing fault detectionen_US
dc.subjectIntelligent systemsen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDamage Detectionen_US
dc.subjectSignalen_US
dc.subjectDecompositionen_US
dc.subjectMachinesen_US
dc.subjectModelen_US
dc.titleA Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifieren_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11265-018-1378-3-
dc.identifier.scopus2-s2.0-85047486088en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidİnce, Türker/F-1349-2019-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorscopusid6603027663-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.identifier.volume91en_US
dc.identifier.issue2en_US
dc.identifier.startpage179en_US
dc.identifier.endpage189en_US
dc.identifier.wosWOS:000456065100006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4329.pdf
  Restricted Access
1.81 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

535
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

425
checked on Nov 20, 2024

Page view(s)

226
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.