Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/970
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oktar, Yigit | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2023-06-16T12:48:10Z | - |
dc.date.available | 2023-06-16T12:48:10Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1939-8018 | - |
dc.identifier.issn | 1939-8115 | - |
dc.identifier.uri | https://doi.org/10.1007/s11265-022-01818-8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/970 | - |
dc.description.abstract | In conventional machine learning applications, each data attribute is assumed to be orthogonal to others. Namely, every pair of dimension is orthogonal to each other and thus there is no distinction of in-between relations of dimensions. However, this is certainly not the case in real world signals which naturally originate from a spatio-temporal configuration. As a result, the conventional vectorization process disrupts all of the spatio-temporal information about the order/place of data whether it be 1D, 2D, 3D, or 4D. In this paper, the problem of orthogonality is first investigated through conventional k-means of images, where images are to be processed as vectors. As a solution, shift-invariant k-means is proposed in a novel framework with the help of sparse representations. A generalization of shift-invariant k-means, convolutional dictionary learning is then utilized as an unsupervised feature extraction method for classification. Experiments suggest that Gabor feature extraction as a simulation of shallow convolutional neural networks provides a little better performance compared to convolutional dictionary learning. Other alternatives of convolutional-logic are also discussed for spatio-temporal information preservation, including a spatio-temporal hypercomplex encoding scheme. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Journal of Sıgnal Processıng Systems For Sıgnal Image And Vıdeo Technology | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sparse representations | en_US |
dc.subject | Convolutional dictionary learning | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Tensors | en_US |
dc.subject | Geometric algebra | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Neural-Network | en_US |
dc.subject | Overcomplete Dictionaries | en_US |
dc.subject | Sparse Representation | en_US |
dc.title | Preserving Spatio-Temporal Information in Machine Learning: A Shift-Invariant k-Means Perspective | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11265-022-01818-8 | - |
dc.identifier.scopus | 2-s2.0-85139250513 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Turkan, Mehmet/0000-0002-9780-9249 | - |
dc.authorid | Oktar, Yigit/0000-0002-8736-8013 | - |
dc.authorwosid | Turkan, Mehmet/AGQ-8084-2022 | - |
dc.authorscopusid | 56560191100 | - |
dc.authorscopusid | 57219464962 | - |
dc.identifier.volume | 94 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 1471 | en_US |
dc.identifier.endpage | 1483 | en_US |
dc.identifier.wos | WOS:000862237900001 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q3 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
4331.pdf Restricted Access | 1.95 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
72
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.