Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/970
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOktar, Yigit-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T12:48:10Z-
dc.date.available2023-06-16T12:48:10Z-
dc.date.issued2022-
dc.identifier.issn1939-8018-
dc.identifier.issn1939-8115-
dc.identifier.urihttps://doi.org/10.1007/s11265-022-01818-8-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/970-
dc.description.abstractIn conventional machine learning applications, each data attribute is assumed to be orthogonal to others. Namely, every pair of dimension is orthogonal to each other and thus there is no distinction of in-between relations of dimensions. However, this is certainly not the case in real world signals which naturally originate from a spatio-temporal configuration. As a result, the conventional vectorization process disrupts all of the spatio-temporal information about the order/place of data whether it be 1D, 2D, 3D, or 4D. In this paper, the problem of orthogonality is first investigated through conventional k-means of images, where images are to be processed as vectors. As a solution, shift-invariant k-means is proposed in a novel framework with the help of sparse representations. A generalization of shift-invariant k-means, convolutional dictionary learning is then utilized as an unsupervised feature extraction method for classification. Experiments suggest that Gabor feature extraction as a simulation of shallow convolutional neural networks provides a little better performance compared to convolutional dictionary learning. Other alternatives of convolutional-logic are also discussed for spatio-temporal information preservation, including a spatio-temporal hypercomplex encoding scheme.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Sıgnal Processıng Systems For Sıgnal Image And Vıdeo Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSparse representationsen_US
dc.subjectConvolutional dictionary learningen_US
dc.subjectNeural networksen_US
dc.subjectTensorsen_US
dc.subjectGeometric algebraen_US
dc.subjectMachine learningen_US
dc.subjectNeural-Networken_US
dc.subjectOvercomplete Dictionariesen_US
dc.subjectSparse Representationen_US
dc.titlePreserving Spatio-Temporal Information in Machine Learning: A Shift-Invariant k-Means Perspectiveen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11265-022-01818-8-
dc.identifier.scopus2-s2.0-85139250513en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authoridOktar, Yigit/0000-0002-8736-8013-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.authorscopusid56560191100-
dc.authorscopusid57219464962-
dc.identifier.volume94en_US
dc.identifier.issue12en_US
dc.identifier.startpage1471en_US
dc.identifier.endpage1483en_US
dc.identifier.wosWOS:000862237900001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4331.pdf
  Restricted Access
1.95 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.