Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBagirov, Adil M.-
dc.contributor.authorUgon, Julien-
dc.contributor.authorWebb, Dean-
dc.contributor.authorOzturk, Gurkan-
dc.contributor.authorKasimbeyli̇, Refail-
dc.date.accessioned2023-06-16T12:48:14Z-
dc.date.available2023-06-16T12:48:14Z-
dc.date.issued2013-
dc.identifier.issn1134-5764-
dc.identifier.issn1863-8279-
dc.identifier.urihttps://doi.org/10.1007/s11750-011-0241-5-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/986-
dc.description.abstractIn this paper, an algorithm for finding piecewise linear boundaries between pattern classes is developed. This algorithm consists of two main stages. In the first stage, a polyhedral conic set is used to identify data points which lie inside their classes, and in the second stage we exclude those points to compute a piecewise linear boundary using the remaining data points. Piecewise linear boundaries are computed incrementally starting with one hyperplane. Such an approach allows one to significantly reduce the computational effort in many large data sets. Results of numerical experiments are reported. These results demonstrate that the new algorithm consistently produces a good test set accuracy on most data sets comparing with a number of other mainstream classifiers.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) Research Project [107M472]en_US
dc.description.sponsorshipDr. Rafail N. Gasimov and Dr. Gurkan Ozturk are the recipients of an Scientific and Technological Research Council of Turkey (TUBITAK) Research Project (Project number: 107M472).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofTopen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonsmooth optimizationen_US
dc.subjectPiecewise linear separabilityen_US
dc.subjectData miningen_US
dc.subjectSupervised learningen_US
dc.subjectPiecewise linear classifiersen_US
dc.subjectMinimizationen_US
dc.subjectDesignen_US
dc.titleA novel piecewise linear classifier based on polyhedral conic and max-min separabilitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11750-011-0241-5-
dc.identifier.scopus2-s2.0-84876065138en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409-
dc.authoridOzturk, Gurkan/0000-0002-9480-176X-
dc.authoridOzturk, Gurkan/0000-0002-9480-176X-
dc.authoridBagirov, Adil/0000-0003-2075-1699-
dc.authoridUgon, Julien/0000-0001-5290-8051-
dc.authorwosidKasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020-
dc.authorwosidOzturk, Gurkan/B-4659-2013-
dc.authorwosidOzturk, Gurkan/M-1116-2019-
dc.authorscopusid7003424380-
dc.authorscopusid14010782900-
dc.authorscopusid36680838000-
dc.authorscopusid35967868200-
dc.authorscopusid35146065000-
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage3en_US
dc.identifier.endpage24en_US
dc.identifier.wosWOS:000317346100002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ4-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4347.pdf
  Restricted Access
1 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

24
checked on Nov 20, 2024

Page view(s)

56
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.