Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Abdeljaber, Osama"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 238
    1-D Convolutional Neural Networks for Signal Processing Applications
    (IEEE, 2019) Kiranyaz, Serkan; İnce, Türker; Abdeljaber, Osama; Avcı, Onur; Gabbouj, Moncef
    1D Convolutional Neural Networks (CNNs) have recently become the state-of-the-art technique for crucial signal processing applications such as patient-specific ECG classification, structural health monitoring, anomaly detection in power electronics circuitry and motor-fault detection. This is an expected outcome as there are numerous advantages of using an adaptive and compact 1D CNN instead of a conventional (2D) deep counterparts. First of all, compact 1D CNNs can be efficiently trained with a limited dataset of 1D signals while the 2D deep CNNs, besides requiring 1D to 2D data transformation, usually need datasets with massive size, e.g., in the Big Data scale in order to prevent the well-known overfitting problem. 1D CNNs can directly be applied to the raw signal (e.g., current, voltage, vibration, etc.) without requiring any pre-or postprocessing such as feature extraction, selection, dimension reduction, denoising, etc. Furthermore, due to the simple and compact configuration of such adaptive 1D CNNs that perform only linear 1D convolutions (scalar multiplications and additions), a real-time and low-cost hardware implementation is feasible. This paper reviews the major signal processing applications of compact 1D CNNs with a brief theoretical background. We will present their state-of-the-art performances and conclude with focusing on some major properties.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1893
    Citation - Scopus: 2230
    1d Convolutional Neural Networks and Applications: a Survey
    (Academic Press Ltd- Elsevier Science Ltd, 2021) Kiranyaz, Serkan; Avcı, Onur; Abdeljaber, Osama; İnce, Türker; Gabbouj, Moncef; Inman, Daniel J.
    During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and electrical motor fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publicly shared in a dedicated website. While there has not been a paper on the review of 1D CNNs and its applications in the literature, this paper fulfills this gap. (C) 2020 The Author(s). Published by Elsevier Ltd.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback