Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Akarsu G."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 1
    Citation - Scopus: 2
    Development of Ultra-Wideband Textile-Based Metamaterial Absorber for Mm-Wave Band Applications
    (Institute of Electrical and Electronics Engineers Inc., 2022) Akarsu G.; Taher H.; Zengin E.B.; Nakmouche M.F.; Fawzy D.E.; Allam A.M.M.A.; Cleary F.
    This work presents a state-of-the-art development of an ultrawide absorber for wearable smart electronic textile applications. The design is based on a novel cell geometry that is previously developed and applied for RF energy harvesting applications. Different textile types were considered in this study, namely, Felt, Denim and Polyester and the achieved-10 dB reflective fractional bandwidths are about 42.828%, 43.65%, and 42.834% respectively. A comparison with traditional counterparts (FR-4 and Rogers dielectrics) shows that the bandwidth exhibited by textile materials is greatly wider. The bending effect of the textile materials is considered in this study and found that the-10 dB bandwidth is inversely proportional with the decrease in the surface curvature of the material. Compared to the currently developed absorbers and similar structures reported in the literature show that the current design is more compact, lighter, and more efficient in terms of the absorptivity. The current results can be considered as starting promising steps for the development of ultra-wideband electronic textiles-based applications such as energy harvesting, health monitoring, smart materials, sensors, and infrared camouflage. © 2022 European Association for Antennas and Propagation.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 4
    A Novel Ultra-Wideband Metamaterial-Based Perfect Absorber for 5g Millimeter-Wave Applications
    (Institute of Electrical and Electronics Engineers Inc., 2022) Akarsu G.; Nakmouche M.F.; Fawzy D.E.; Allam A.M.M.A.
    This paper proposes a novel design of an ultra-thin, miniature metamaterial (MM)-based ultra-wideband absorber. The unit cell is designed by combining two letters (H & S) and side patches for the generation of multi-resonance bands, and printed on a grounded dielectric of Rogers RT5880 material. Based on the numerical plane-wave simulations, the proposed absorber exhibits an ultra-wideband of about 16.2 GHz absorption bandwidth in the frequency range between 27.669 GHz and 43.871 GHz. The average absorptivity rates are close to 99% for incident angles between 0°-20°. The developed absorber preserves the ultra-wideband property of about 11.50 GHz for incident angles between 20° and 30° in the frequency range between 27.7 GHz and 39.2 GHz with average absorptivity rates close to 90%. This design is very suitable for 5G millimeter-waves and Ka-band applications. © 2022 IEEE.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback