Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ekizceli, G."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 15
    Assessment of Mtor Pathway Molecules During Implantation in Rats
    (Taylor & Francis Ltd, 2017) Ekizceli, G.; İnan, Sevinç; Oktem, G.; Onur, E.; Ozbilgin, K.
    Mammalian target of rapamycin (mTOR) is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. We investigated the role of mTOR and other signaling molecules in the rat uterus during implantation. Female pregnant rats were divided into three groups: embryonic days (ED) 4.5, 5.5 and 6.5 according to vaginal smears. Immunohistochemical staining of mTORC1, mTORC2, IGF1, PI3K, pAkt1/2/3, ERK1 and pERK1/2 was performed on formalin fixed, paraffin embedded uterine tissue samples. pAkt1/2/3 and ERK1 also were analyzed using western blotting. We found that PI3K/Akt/mTOR and ERK/pERK were increased during the implantation period. Different amounts of mTORC1, mTORC2, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 were expressed in luminal epithelium, decidual cells, embryoblast and trophoblast cells during implantation. We suggest that mTOR and associated signaling molecules may participate in implantation.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Investigation of the Effects of Rapamycin on the Mtor Pathway and Apoptosis in Metastatic and Non-Metastatic Human Breast Cancer Cell Lines
    (Comenius Univ, 2020) Ekizceli, G.; Uluer, E. T.; İnan, Sevinç
    AIM: The aim of this study was to analyze the effects of rapamycin treatment on apoptosis via mTOR pathway in metastatic and non-metastatic human breast cancer cell lines by immunohistochemical and TUNEL analysis. METHOD: MCF-7 and MDA-MB 231 cell lines were incubated under standard conditions forming Rapamycin and control groups. In immunohistochemical evaluation; mTOR pathway was evaluated with anti-IGF1, anti-PI3K, anti-pAKT1/2/3, anti-mTORC1, anti-mTORC2 and anti-ERK1 antibodies. The effect of apoptosis was also confirmed by TUNEL method. RESULTS: In this study, activation of PI3K/AKT/mTOR and related molecular pathways in the MDA-MB 231 and MCF-7 breast cancer cell line was evaluated and it was observed that these pathways could play a key role in cancer development. Increased apoptotic cells were observed in mTORC1 inhibition by Rapamycin administration. CONCLUSION: Targeting the mTOR pathway in breast cancer treatment may be a treatment option. In addition, the demonstration and confirmation of increased apoptosis in Rapamycin treated groups suggested that Rapamycin, an inhibitor of mTOR, is promising in the treatment of breast cancer (Tab. 2, Fig. 3, Ref. 66). Text in PDF www.elis.sk.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback