Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Emec, Murat"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Development a Machine Learning Model To Prediction of Expanded Disability Status Scale in Multiple Sclerosis Patients
    (Sage Publications Ltd, 2024) Ozdogar, Asiye Tuba; Emec, Murat; Zengin, Ela; Ozcanhan, Mehmet Hilal; Ozakbas, Serkan
  • Loading...
    Thumbnail Image
    Article
    Development of a Machine Learning Model to Predict the Expanded Disability Status Scale in Multiple Sclerosis Patients
    (Elsevier Sci Ltd, 2026) Ozdogar, Asiye Tuba; Emec, Murat; Kaya, Ergi; Zengin, Ela Simay; Ozcanhan, Mehmet Hilal; Ozakbas, Serkan
    Objective: The assessment of disability in multiple sclerosis (MS) patients is crucial for treatment decisions and prognosis estimation. The Expanded Disability Status Scale (EDSS) provides a standardized way to quantify disability in MS. However, predicting EDSS scores can be challenging due to the complex and heterogeneous nature of the disease. Machine learning techniques offer a promising approach to predict EDSS scores based on various patient characteristics. Methods: 231 people with MS (pwMS) who had an assessment of physical, psychosocial, and cognitive functions in three timelines (baseline (T0), first year (T1), and second year (T2)) were enrolled. The dataset used for the study consists of 126 features. Feature selection was based on feature saliency and correlation analysis. Three machine learning models -XGBoost, Random Forest, and Linear Regression -were trained on the selected features. Hyperparameter tuning was also carried out on the models. Model performance was evaluated using standard evaluation metrics, including MAE, MSE, and R2. Results: The Machine Learning model based on the XGBoost algorithm performed best in predicting EDSS scores (T2). The MAE value obtained with the XGBoost model is 0.2361, the MSE value is 0.2408, and the R2 value is 0.9705. These results indicate that XGBoost's predictive ability on the current dataset is promising. Conclusion: Our study demonstrates the feasibility of using machine learning techniques to predict EDSS scores in MS patients. The developed models show promising performance and have the potential to enhance clinical decision-making and patient management in MS care.
  • Loading...
    Thumbnail Image
    Article
    Development of Restless Legs Syndrome Severity Prediction Models for People with Multiple Sclerosis Using Machine Learning
    (Galenos Publishing House, 2025) Kaya, Ergi; Emec, Murat; Ozdogar, Asiye Tuba; Zengin, Eta Simay; Karakas, Hitat; Dastan, Seda; Ozakbas, Serkan
    Objectives: This study aimed to develop an artificial intelligence-supported restless legs syndrome (RLS) severity prediction model for people with multiple sclerosis using machine learning methods. Patients and methods: Twenty-three individuals (14 females, 7 males; mean age: 40.6 +/- 10.9 years; range, 33 to 44 years) with multiple sclerosis with RLS were included in this observational study between March 2022 and March 2023. The International Restless Legs Syndrome Study Group Rating Scale was used to determine the RLS severity of the participants. The age, sex, body mass index, regular exercise habits, disease duration, Expanded Disability Status Scale (EDSS), estimated maximal aerobic capacity (VO2max), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale, Multiple Sclerosis International Quality of Life Questionnaire, Multiple Sclerosis Walking Scale-12 (MSWS-12), and timed 25-foot walk test were determined as predictive variables. A correlation matrix was created. DecisionTree, RandomForest, and XGBoost machine learning methods were used to develop a model for predicting the RLS severity. Results: According to the obtained correlation matrix, PSQI scores strongly correlated with RLS severity (Pearson r=0.76). Meanwhile, EDSS scores (0.49), MSWS-12 scores (0.45), and disease duration (0.45) showed moderate correlations with RLS. Among the three different meachine learning methods, XGBoost demonstrated the best performance in predicting the severity of RLS, with a mean absolute error of 1.94, mean squared error of 4.58, mean absolute percentage error of 0.0735, and a test accuracy of 92.65%. The results showed that the severity of RLS could be estimated with 92.65% accuracy. Conclusion: This study showed a strong correlation between PSQI scores and RLS severity and that RLS severity could be predicted using machine learning methods.
  • Loading...
    Thumbnail Image
    Conference Object
    Pregnancy and Future Disability in MS: Can Machine Learning Help Predict the Trajectory
    (Sage Publications Ltd, 2025) Emec, Murat; Kaya, Ergi; Simsek, Yasemin; Ozcanhan, Mehmet Hilal; Ozakbas, Serkan
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback