Browsing by Author "Katican, T."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Another View of BZ-Algebras(University of Guilan, 2025) Öner, T.; Katican, T.; Borumand Saeid, A.B.In this work, Sheffer stroke BZ-algebra (briefly, SBZ-algebra) is introduced and its properties are examined. Then a partial order is defined on SBZ-algebras. It is shown that a Cartesian product of two SBZ-algebras is an SBZ-algebra. After giving SBZ-ideals and SBZ-subalgebras, it is proved that any SBZ-ideal of an SBZ-algebra is an ideal of this SBZ-algebra and vice versa, and that it is also an SBZ-subalgebra. Also, a congruence relation on an SBZ-algebra is determined by an SBZ-ideal, and the quotient of an SBZ-algebra by a congruence relation on this algebra is constructed. Thus, it is proved that the quotient of the SBZ-algebra is an SBZ-algebra. Furthermore, we define SBZ-homomorphisms between SBZ-algebras and state that the kernel of an SBZ-homomorphism is an SBZ-ideal and so an SBZ-subalgebra. Hence, a new SBZ-homomorphism is described by means of the kernel of an SBZ-homomorphism. Finally, we show that some properties are preserved under SBZ-homomorphisms. © 2025 University of Guilan.Article The Characterization of Nelson Algebras by Sheffer Stroke(Sciendo, 2025) Öner, T.; Katican, T.; Borumand Saeid, A.B.In this study, Sheffer stroke Nelson algebras (briefly, s-Nelson algebras), (ultra) ideals, quasi-subalgebras, quotient sets, and fuzzy structures on these algebraic structures are introduced. The relationships between s-Nelson and Nelson algebras are analyzed. It is also shown that an s-Nelson algebra is a bounded distributive modular lattice, and the family of all ideals forms a complete distributive modular lattice. A congruence relation on an s-Nelson algebra is determined by an ideal and quotient s-Nelson algebras are constructed by this congruence relation. Finally, it is indicated that a quotient s-Nelson algebra constructed by the ultra ideal is totally ordered and that the cardinality of the quotient is less than or equal to 2. © 2025 Tahsin Oner et al., published by Ovidius University of Constanta.

