Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ouedraogo, Kiswendsida Elias"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 2
    Citation - Scopus: 5
    Decimal States Smart Grid Operations Concept: Technical Solution and Benefit for Renewable Energy Integration
    (IEEE, 2022) Ouedraogo, Kiswendsida Elias; Ekim, Pinar Oguz; Demirok, Erhan
    The energy transition is a global challenge that retains the attention of a wide range of stakeholders including engineers, regulators, consumers, investors, and academicians. With higher intermittent renewable energy penetration, electrification of mobility, and intensification of air conditioning demand, important stress on the power grid, resulting in overloading of distribution network infrastructures and grid stability issues may arise in near future. Various solutions such as smart metering, demand response, and energy storage have been explored, however, their cost-to-benefit ratio is still not satisfying. This paper explores a new grid operation concept named "Decimal State" grid which dynamically throttles the subscribed power to match the grid supply capability without a direct load control. A simple yet effective communication method has been built and tested to support the implementation of the decimal state grid. Also, simulations showed that decimal state grid operation can avoid power outages in both fossil fuel or fully solar powered grid with a power deficit. Further, the simulation revealed that a decimal state grid can significantly reduce the size of long-duration energy storage.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 17
    Citation - Scopus: 38
    Feasibility of Low-Cost Energy Management System Using Embedded Optimization for Pv and Battery Storage Assisted Residential Buildings
    (Pergamon-Elsevier Science Ltd, 2023) Ouedraogo, Kiswendsida Elias; Oğuz Ekim, Pınar; Demirok, Erhan
    In this study, an energy management system (EMS) focusing on low-cost hardware and embedded optimization has been built. A benchmark consisting of a residential photovoltaic (PV) and battery connected to the grid but without feed in power has been considered. The proposed EMS accepts input variables as building electrical load data, PV output data, the electricity time of use rates. The master EMS ensures the optimization of the battery charge-discharge profile to reach the lowest possible energy bill. Sensitivity analysis demonstrates that the presence of optimization systems leads to a more stable energy cost even though power demand and PV pro-duction vary during the day. In the cases studied, the bill reduction is 32% up to 50% depending on load or solar PV generation variations. By comparison, in the literature where more complex optimization in MATLAB environment were used, a bill reduction of 24%-34% was realized. The system cost is estimated to be around 30$ which is much lower than the typical 100$-600$ price for similar products. The system can be practically in-tegrated in applications such as EMS of schools, residential or public buildings by inserting it through the power distribution panel where all protection devices are located.
  • Loading...
    Thumbnail Image
    Conference Paper
    Citation - WoS: 1
    Tracking neighborhood closed-loop pumped hydro storage potential
    (IEEE Computer Society, 2023) Ouedraogo, Kiswendsida Elias; Oğuz Ekim, Pınar; Demirok, Erhan
    Worldwide, energy is at the center of the socio-economical, geopolitical, and climate crises. For this reason, governments, businesses, and communities are promoting green energy to boost their energy resilience and energy independence sustainably. However, the bottleneck of replacing fossil fuel power plants entirely with intermittent renewable energy remains the high cost of energy storage systems. The study explored the existence of megawatt-hours scale closed-loop pumped hydro storage reservoirs near communities' centers. A MATLAB algorithm has been developed to detect pairs of reservoirs with one, four, and nine hectares each, and a head of one to three hundred meters, corresponding to an energy capacity of 20 to 540 megawatt hours per pair. For the three cities studied, (Banfora / Burkina, Syracuse / New York, Manisa / Turkey) the results revealed the existence of more than 10.000 megawatt-hours storage capacity in each city which meets or exceeds the need of the communities. Therefore, a 100% renewable energy power grid that is resilient, and reliable, can be achieved faster by adopting distributed closed-loop pumped hydro storage which is likely to attract a large number of smaller investors. © 2023 IEEE.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback