Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ozbey, B.O."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Endemic Inula Viscosa (l.) Extracts and Their Potential for Both Biosynthesizing Silver Nanoparticles and Anti-Microbial Activity
    (Springer Science and Business Media Deutschland GmbH, 2024) Ozbey, B.O.; Çalışkan Bilgin, Gülizar
    Green synthesis has recently become one of the most popular methods, as it is both low-budget and environmentally friendly. One of the important considerations in green synthesis is to perform an optimization study because it is necessary to understand how different application conditions (pH, incubation time, metal concentration, etc.) can affect the formation of nanoparticles with different morphology and efficiency, underlining the need for optimization of the process. In this study, firstly the endemic Inula Viscosa (L.) plant, popularly known as cancer grass, was extracted using distillation method. Then, silver nanoparticle (AgNPs) biosynthesis was carried out using the extract of Inula Viscosa (L.) plant. Their physicochemical characterization was conducted using Fourier-transformed infrared spectroscopy (FTIR), UV-visible spectrophotometry (UV-Vis), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). The time, pH, and AgNO3 concentration, which affect the characteristic and morphological properties of AgNPs, were optimized with the Box Behnken Design (BBD) method, with statistical and experimental design determined by means of a Design Expert statistical software program. The disk diffusion method was also implemented and optimized to increase antimicrobial activity. The study determined the optimal levels of AgNPs, which were green synthesized by Inula Viscosa (L.), provided proof of its antimicrobial properties, and demonstrated their potential to be used as a low-budget aid to new generation clinical treatment methods. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback