Browsing by Author "Taher, Hany"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 2Design of Triple-Band Bandpass Filter Using Inverted Microstrip Ridge Gap Waveguide for Ka-Band Applications(IEEE, 2022) Cengiz, Mehmet Faruk; Nakmouche, Mohammed Farouk; Fawzy, Diaa E.; Allam, A. M. M. A.; Akarsu, Gokberk; Taher, HanyIn this paper, a triple-band inverted microstrip Ridge Gap Waveguide (RGW) filter is designed using a double octagonal ring resonator (RR) with corner cuts. The design parameters are optimized using the Finite Difference Time Domain (FDTD) method (CST studio simulator). The filter is implemented on Rogers RT5880 (epsilon(r) =2.2, thickness of 0.787 mm and loss tangent tan delta = 0.0009). It is selected because of its low losses at high frequencies. The proposed design operates within the Ka frequency band (27-40 GHz), with resonance frequencies of 32.32 GHz, 35.75 GHz, and 38.12 GHz. The return losses reach levels of about -35 dB, -25 dB, and -32 dB for the three bands, respectively. The filter exhibits a low insertion losses of about 0.6 dB, 1.1 dB, and 0.9 dB at the three resonant frequencies, respectively.Conference Object Citation - WoS: 1Citation - Scopus: 4Development of a Novel Ultra-Wideband Textile-Based Metamaterial Absorber for Mm-Wave Band Applications(IEEE, 2022) Akarsu, Gokberk; Cengiz, Mehmet Faruk; Fawzy, Diaa E.; Zengin, E. Buse; Allam, A. M. M. A.; Taher, Hany; Cleary, FrancesThis work proposes an ultra-wideband Metamaterial (MM) absorber for smart electronic textile (etextile) applications. The design is based on a novel cell geometry composed of two combined letter patches (A&S) printed on a grounded textile substrate. This unit cell geometry is specifically developed and optimized for millimeter-wave (mm-wave) applications. In this study, different types of textiles are considered, namely, Felt, Denim, and Polyester, and the achieved -10 dB reflective fractional bandwidths are about 50.36%, 44.49% and 41.42%, respectively. A comparison between conventional counterparts PCB-based dielectrics (FR-4 and Rogers RT-5880) and textile-based fabrics (Felt, Denim, and Polyester) indicates that the bandwidths exhibited by textile fabrics are significantly wider. This study also demonstrates that the bending of textile-based materials has an inverse effect on the -10 dB bandwidth, as the material's surface curvature increases. The current design is more compact, thin, and more efficient in terms of absorptivity in comparison to other reported absorbers and structures in the literature. The obtained results can be considered promising for the development of ultra-wideband e-textile-based applications such as energy harvesting, health monitoring, and camouflage systems.
