Development of Building Damage Functions for Big Earthquakes in Turkey

dc.contributor.author Fawzy, Diaa E.
dc.contributor.author Arslan, Guvenc
dc.date.accessioned 2023-06-16T14:11:33Z
dc.date.available 2023-06-16T14:11:33Z
dc.date.issued 2015
dc.description World Conference on Technology, Innovation and Entrepreneurship -- MAY 28-30, 2015 -- Istanbul, TURKEY en_US
dc.description.abstract The current work is an attempt to predict building reactions to big earthquakes using real data collected from surveys carried out after the occurrence of earthquakes. With the development of building damage functions for big earthquakes in Turkey one can predict the damage levels as a function of earthquakes' intensity and the building parameters. Our model is based on neural networks techniques which allow for the non-linear correlations to be taken into account. We analyse data collected for damaged buildings after the following three big earthquakes: Afyon (2002; Mw - 6.0), Bingol (2003; Mw - 6.4) and Duzce (1999; Mw - 7.2). The current model includes some of the main important factors affecting the health of any structure, namely, age, number of stories, floor areas, and the column areas. Our method of damage prediction is based on several earthquakes and buildings with different damage levels. The obtained results show that there is a strong correlation between the strength of the earthquake, the basic building parameters and the damage level. The obtained building damage function is essential for future plans and regulations for new constructions and can be considered as an essential module for hazards mitigation systems. (C) 2015 The Authors. Published by Elsevier Ltd. en_US
dc.identifier.doi 10.1016/j.sbspro.2015.06.179
dc.identifier.issn 1877-0428
dc.identifier.uri https://doi.org/10.1016/j.sbspro.2015.06.179
dc.identifier.uri https://hdl.handle.net/20.500.14365/1419
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof World Conference on Technology, Innovatıon And Entrepreneurshıp en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject earthquakes en_US
dc.subject neural networks en_US
dc.subject structural health monitoring en_US
dc.subject estimation methods en_US
dc.title Development of Building Damage Functions for Big Earthquakes in Turkey en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Arslan, Guvenc/0000-0002-4770-2689
gdc.author.wosid Arslan, Guvenc/AAE-7061-2019
gdc.author.wosid Fawzy, Diaa/AAI-9208-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Fawzy, Diaa E.; Arslan, Guvenc] Izmir Univ Econ, Sakarya Caddesi 156, TR-35330 Izmir, Turkey en_US
gdc.description.endpage 2297 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 2290 en_US
gdc.description.volume 195
gdc.description.wosquality N/A
gdc.identifier.openalex W2307607466
gdc.identifier.wos WOS:000380509900279
gdc.index.type WoS
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6432723E-9
gdc.oaire.isgreen false
gdc.oaire.keywords structural health monitoring
gdc.oaire.keywords neural networks
gdc.oaire.keywords earthquakes
gdc.oaire.keywords estimation methods
gdc.oaire.popularity 2.261342E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.42582216
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 20
gdc.virtual.author Gadelmavla, Diaa
gdc.wos.citedcount 5
relation.isAuthorOfPublication 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isAuthorOfPublication.latestForDiscovery 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isOrgUnitOfPublication a80bcb24-4ed9-4f67-9bd1-0fb405ff202d
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery a80bcb24-4ed9-4f67-9bd1-0fb405ff202d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
463.pdf
Size:
322.75 KB
Format:
Adobe Portable Document Format