Real-Time EEG Decoding of Motor Imagery via Nonlinear Dimensionality Reduction (Manifold Learning) and Shallow Classifiers

Loading...
Thumbnail Image

Date

2025

Authors

Sayilgan, Ebru

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study introduces a real-time processing framework for decoding motor imagery EEG signals by integrating manifold learning techniques with shallow classifiers. EEG recordings were obtained from six healthy participants performing five distinct wrist and hand motor imagery tasks. To address the challenges of high dimensionality and inherent nonlinearity in EEG data, five nonlinear dimensionality reduction methods, t-SNE, ISOMAP, LLE, Spectral Embedding, and MDS, were comparatively evaluated. Each method was combined with three shallow classifiers (k-NN, Naive Bayes, and SVM) to investigate performance across binary, ternary, and five-class classification settings. Among all tested configurations, the t-SNE + k-NN pairing achieved the highest accuracies, reaching 99.7% (two-class), 99.3% (three-class), and 89.0% (five-class). ISOMAP and MDS also delivered competitive results, particularly in multi-class scenarios. The presented approach builds upon our previous work involving EEG datasets from individuals with spinal cord injury (SCI), where the same manifold techniques were examined extensively. Comparative findings between healthy and SCI groups reveal consistent advantages of t-SNE and ISOMAP in preserving class separability, despite higher overall accuracies in healthy subjects due to improved signal quality. The proposed pipeline demonstrates low-latency performance, completing signal processing and classification in approximately 150 ms per trial, thereby meeting real-time requirements for responsive BCI applications. These results highlight the potential of nonlinear dimensionality reduction to enhance real-time EEG decoding, offering a low-complexity yet high-accuracy solution applicable to both healthy users and neurologically impaired individuals in neurorehabilitation and assistive technology contexts.

Description

Keywords

Sci, EEG, BCI, Rehabilitation Systems, Manifold Learning, Article

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Biosensors-Basel

Volume

15

Issue

10

Start Page

692

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Downloads

5

checked on Dec 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.