Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1019
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKürkçü, Ömür Kıvanç-
dc.date.accessioned2023-06-16T12:58:48Z-
dc.date.available2023-06-16T12:58:48Z-
dc.date.issued2020-
dc.identifier.issn2008-1359-
dc.identifier.issn2251-7456-
dc.identifier.urihttps://doi.org/10.1007/s40096-019-00314-8-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1019-
dc.description.abstractIn this paper, we introduce a numerical method to obtain an accurate approximate solution of the integro-differential delay equations with state-dependent bounds. The method is based basically on the generalized Mott polynomial with the parameter-beta Chebyshev-Lobatto collocation points and matrix structures. These matrices are gathered under a unique matrix equation and then solved algebraically, which produce the desired solution. We discuss the behavior of the solutions, controlling their parameterized form via beta and so we monitor the effectiveness of the method. We improve the obtained solutions by employing the Mott-residual error estimation. In addition to comparing the results in tables, we also illustrate the solutions in figures, which are made up of the phase plane, logarithmic and standard scales. All results indicate that the present method is simple-structured, reliable and straightforward to write a computer program module on any mathematical software.en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofMathematıcal Scıencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCollocation pointsen_US
dc.subjectError estimationen_US
dc.subjectMatrix methoden_US
dc.subjectMott polynomialen_US
dc.subjectDelayen_US
dc.subjectDifferential Equationen_US
dc.subjectCollocation Methoden_US
dc.subjectDicksonen_US
dc.subjectTayloren_US
dc.subjectModelen_US
dc.titleA numerical method with a control parameter for integro-differential delay equations with state-dependent bounds via generalized Mott polynomialen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40096-019-00314-8-
dc.identifier.scopus2-s2.0-85112664858en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKürkçü, Ömür Kıvanç/0000-0002-3987-7171-
dc.authorwosidKürkçü, Ömür Kıvanç/AAQ-4682-2020-
dc.authorscopusid57038964500-
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.identifier.startpage43en_US
dc.identifier.endpage52en_US
dc.identifier.wosWOS:000518823200005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
22.pdf1.7 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 20, 2024

Page view(s)

42
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.