Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1054
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rossi, Roberto | - |
dc.contributor.author | Tarim, S. Armagan | - |
dc.contributor.author | Prestwich, Steven | - |
dc.contributor.author | Hnich, Brahim | - |
dc.date.accessioned | 2023-06-16T12:58:53Z | - |
dc.date.available | 2023-06-16T12:58:53Z | - |
dc.date.issued | 2014 | - |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.issn | 1873-5649 | - |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2014.01.019 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1054 | - |
dc.description.abstract | The first order loss function and its complementary function are extensively used in practical settings. When the random variable of interest is normally distributed, the first order loss function can be easily expressed in terms of the standard normal cumulative distribution and probability density function. However, the standard normal cumulative distribution does not admit a closed form solution and cannot be easily linearised. Several works in the literature discuss approximations for either the standard normal cumulative distribution or the first order loss function and their inverse. However, a comprehensive study on piecewise linear upper and lower bounds for the first order loss function is still missing. In this work, we initially summarise a number of distribution independent results for the first order loss function and its complementary function. We then extend this discussion by focusing first on random variables featuring a symmetric distribution, and then on normally distributed random variables. For the latter, we develop effective piecewise linear upper and lower bounds that can be immediately embedded in MILP models. These linearisations rely on constant parameters that are independent of the mean and standard deviation of the normal distribution of interest. We finally discuss how to compute optimal linearisation parameters that minimise the maximum approximation error. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.description.sponsorship | University of Edinburgh CHSS Challenge Investment Fund; European Community [244994]; Scientific and Technological Research Council of Turkey (TUBITAK) [110M500]; Hacettepe University-BAB; Science Foundation Ireland (SFI) [SFI/12/RC/2289] | en_US |
dc.description.sponsorship | We thank the anonymous reviewer for her/his encouraging and helpful comments. R. Rossi is supported by the University of Edinburgh CHSS Challenge Investment Fund and by the European Community's Seventh Framework Programme (FP7) under Grant agreement No. 244994 (project VEG-i-TRADE). S. A. Tarim is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 110M500 and by Hacettepe University-BAB. S. Prestwich is supported by Science Foundation Ireland (SFI) under Grant No. SFI/12/RC/2289. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Applıed Mathematıcs And Computatıon | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | First order loss function | en_US |
dc.subject | Complementary first order loss function | en_US |
dc.subject | Piecewise linear approximation | en_US |
dc.subject | Minimax | en_US |
dc.subject | Jensen's | en_US |
dc.subject | Edmundson-Madansky | en_US |
dc.subject | Approximation | en_US |
dc.title | Piecewise linear lower and upper bounds for the standard normal first order loss function | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.amc.2014.01.019 | - |
dc.identifier.scopus | 2-s2.0-84893325296 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Tarim, S. Armagan/0000-0001-5601-3968 | - |
dc.authorid | Rossi, Roberto/0000-0001-7247-1010 | - |
dc.authorid | Prestwich, Steven/0000-0002-6218-9158 | - |
dc.authorid | Hnich, Brahim/0000-0001-8875-8390 | - |
dc.authorwosid | Tarim, S. Armagan/B-4414-2010 | - |
dc.authorwosid | Rossi, Roberto/B-4397-2010 | - |
dc.authorscopusid | 35563636800 | - |
dc.authorscopusid | 6506794189 | - |
dc.authorscopusid | 7004234709 | - |
dc.authorscopusid | 6602458958 | - |
dc.identifier.volume | 231 | en_US |
dc.identifier.startpage | 489 | en_US |
dc.identifier.endpage | 502 | en_US |
dc.identifier.wos | WOS:000332525000044 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
24
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
21
checked on Nov 20, 2024
Page view(s)
86
checked on Nov 18, 2024
Download(s)
20
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.