Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdıvar, Murat-
dc.contributor.authorRaffoul, Youssef N.-
dc.date.accessioned2023-06-16T12:59:02Z-
dc.date.available2023-06-16T12:59:02Z-
dc.date.issued2009-
dc.identifier.issn0898-1221-
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2009.03.065-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1114-
dc.description.abstractLet T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x(Delta)(t) = -a(t)x(delta(t))delta(Delta)d(t). Moreover, if T is a periodic time scale, then necessary conditions are given for the existence of a unique periodic solution of the above mentioned equation. (c) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers & Mathematics With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDelay dynamic equationsen_US
dc.subjectFixed point theoryen_US
dc.subjectLyapunoven_US
dc.subjectPeriodic solutionsen_US
dc.subjectStabilityen_US
dc.subjectTime scalesen_US
dc.titleStability and Periodicity in Dynamic Delay Equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.camwa.2009.03.065-
dc.identifier.scopus2-s2.0-67349147555-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridADIVAR, Murat/0000-0002-9707-2005-
dc.authorwosidADIVAR, Murat/N-3430-2018-
dc.authorscopusid55913381700-
dc.authorscopusid6602902226-
dc.identifier.volume58en_US
dc.identifier.issue2en_US
dc.identifier.startpage264en_US
dc.identifier.endpage272en_US
dc.identifier.wosWOS:000267929700007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
127.pdf491.94 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.